Extending Nunchaku to Dependent Type Theory

Simon Cruanes Jasmin Christian Blanchette

Inria Nancy — Grand Est, France Inria Nancy — Grand Est, France
Max-Planck-Institut fur Informatik, Saarbriicken, Gexny

jasmin.blanchette@inria.fr

simon.cruanes@inria.fr

Nunchaku is a new higher-order counterexample generatmdoan a sequence of transformations
from polymorphic higher-order logic to first-order logicnlike its predecessor Nitpick for Isabelle,
it is designed as a stand-alone tool, with frontends forowariproof assistants. In this short paper,
we present some ideas to extend Nunchaku with partial stfggatependent types and type classes,
to make frontends for Coq and other systems based on depédpgdertheory more useful.

1 Introduction

In recent years, we have seen the emergence of “hammer®graitons of automatic theorem provers
in proof assistants, such as Sledgehammer and HOLyHarminé&diseful as they might be, these tools
are mostly helpless in the face of an invalid conjecture. ibEsrand experts alike can enter invalid for-
mulas and find themselves wasting hours (or days) on an intp@gsoof; once they identify and correct
the error, the proof is often easy. To discover flaws earlyesproof assistants include counterexample
generators to debug putative theorems or specific subgoas interactive proof. When formalizing
algebraic results in Isabelle/HOL, Guttmann etlall [21] agked that

Counterexample generators such as Nitpick complementTRe@&utomatic theorem prov-
ing] systems and allow a proof and refutation game which efuldor developing and
debugging formal specifications.

Nunchaku is a new fully automatic counterexample generfaohigher-order logic (simple type
theory) designed to be integrated into several proof asgist It supports polymorphism, (co)algebraic
datatypes, (co)recursive functions, and (co)inductivedjmates. The tool is undergoing considerable
development, and we expect that it will soon be sufficienggful to mostly replace Nitpick [8] for
Isabelle/HOL. The source code is freely available orffine.

A Nunchaku frontend in a proof assistant providesusmchaku command that can be invoked on
conjectures to debug them. It collects the relevant dafimstand axioms, translates them to higher-order
logic along with the negated conjecture, invokes Nunchakud, translates any model found to higher-
order logic. We have developed a frontend for Isabelle/H8R].[We are also working on a frontend for
the set-theoretic TLAProof System[18] and plan to develop frontends for otheopassistants.

This short paper discusses some of the issues that must essed to make frontends for Caoq [4]
and other systems based on dependent type theory (e.g., Legia and Matita) applicable beyond their
simple type theory fragment. We plan to elaborate and imetdrthe approach in a Coq frontend, as
part of the Inria technological development action “Corgxemples utilisables par Isabelle et Coq.”

Ihttps://github. com/nunchaku-inria/nunchaku

J.C. Blanchette and C. Kaliszyk: © S. Cruanes and J. C. Blanchette
Hammers for Type Theories (HaTT'16) This work is licensed under the
EPTCS 210, 2016, pp. B=12, doi:10.4204/EPTCS.210.3 Creative Commoris Attribution License.

http://dx.doi.org/10.4204/EPTCS.210.3
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
https://github.com/nunchaku-inria/nunchaku

4 Extending Nunchaku to Type Theory

2 Overview of Nunchaku

Nunchaku is the spiritual successor to Nitpick but is desthas a stand-alone OCaml program, with
its own input language. Whereas Nitpick generates a suocestfinite problems for increasing car-
dinalities, Nunchaku translates its input to one first-ordgic program that targets the finite model
finding fragment of CVCA4[]2], a state-of-the-art SMT (sa#ibflity modulo theories) solver. Using
CVC4 as a backend allows Nunchaku to reason efficiently adithimetic constraints and (co)algebraic
datatypes/[36] and to detect unsatisfiability in additiorsatisfiability. Support for other backends, in-
cluding Kodkod [43] (used by Nitpick) and Paraddx [16], istie works. We also plan to integrate
backends based on code execution and narrowing, as prdwd@dickcheck for Isabelle/HOL [10], to
further increase the likelihood of finding counterexamples

Nunchaku’s input syntax is inspired by that of proof assitd#egbased on higher-order logic (e.g.,
Isabelle/HOL) and by typed functional programming lang@se.g., OCaml). The following problem
gives a flavor of the syntax:

data nat := Zero | Suc nat.
pred even : nat — prop ;=

even Zero;

Vn. odd n = even (Sucn)
and odd : nat — prop :=

Vn. even n=> odd (Suc n).
val m: nat.

goal even mA — (m= Zero).

The problem defines a datatypef) and two mutually recursive inductive predicategeq andodd), it
declares a constant, and it specifies a goal to satisfynf‘is even and nonzero”). For counterexample
generation, the negated conjecture must be specified asuhehbku goal. For the example above,
Nunchaku outputs the model

val even := A(n:nat). IF n= Zero V n = Suc (Suc Zero) THEN true ELSE?__n.
val odd := A(n:nat). IF n= Suc Zero THEN true ELSE?__n.
valm = Suc (Suc Zero).

The output is a finite fragment of an infinite model. The noiati?__' is a placeholder for an unknown
value or function. To most users, the interesting part isritexpretation ofn; but it may help to inspect
the partial model oéven andodd to check if they have the expected semantics.

Given an input problem, Nunchaku parses it before applyisgauence of translations, each reduc-
ing the distance to the target fragment. In our example, tbdigateseven and odd are translated to
recursive functions, then the recursive functions are @eddo allow finite model finding, by limiting
their domains to an unspecified finite fragment. If Nunchakddia model of the goal, it translates it
back to the input language, reversing each phase.

The translation pipeline includes the following phasesifdaeld from a previous papér [37]):

Typeinference infers types and checks definitions;
Type skolemization replacesia. ¢[a] with ¢[7], wherer is a fresh type;

Monomorphization specializes polymorphic definitions on their type arguraemtd removes unused
definitions;

S. Cruanes and J. C. Blanchette 5

Elimination of equations translates multiple-equation definitions of recursivections into a single
nested pattern matching;

Specialization creates instances of functions with static arguments, @e.argument that is passed
unchanged to all recursive calls);

Polarization specializes predicates into a version used in positivetipasiand a version used in nega-
tive positions;

Unrolling adds a decreasing argument to possibly ill-founded presica
Skolemization introduces Skolem symbols for term variables;

Elimination of (co)inductive predicates recasts a multiple-clause (co)inductive predicate dédiminto
a recursive equation;

A-Lifting eliminatest-abstractions by introducing named functions;
Elimination of higher-order constructs substitutes SMT-style arrays for higher-order functions;
Elimination of recursive functions encodes recursive functions to allow finite model finding;

Elimination of pattern matching rewrites pattern-matching expressions using datatypeidiimators
and selectors;

Elimination of assertions encodessSSERTING operator using logical connectives;

CVC4invocation runs CVC4 to obtain a model.

Although our examples use datatypes and well-founded {@ting) recursion, Nunchaku also sup-
ports codatatypes and productive corecursion. In additidimite values, cycliax-regular codatatype
values can arise in models (e.qg., the infinite strea®910,9,0,9,...) [36].

While most of Nunchaku’s constructs are fairly conventlomame is idiosyncratic and plays a key
role in the translations described here: TA®SERTING operator, writtert ASSERTING ¢, attaches a
formula o—the guard—to a termt. It allows the evaluation of only if ¢ is satisfied. The construct
is equivalent toF ¢ THEN t ELSE UNREACHABLE in other specification languages (e.g., the Haskell
Bounded Model Checker [14]). Internally, Nunchaku pulls A$SERTING guards outside of terms into
the surrounding logical context, carefully distinguighipositive and negative contexts.

Nunchaku can only find classical models with functional egtenality, which are a subset of the
models of constructive type theory. This means the tookttogr with the envisioned encoding, will be
sound but incomplete: All counterexamples will be genulmg, no counterexamples will be produced
for classical theorems that do not hold intuitionisticaljWe doubt that this will seriously impair the
usefulness of Nunchaku in practice.

3 Encoding Recursive Functions

When using finite model finding to generate counterexamplesgntral issue is to translate infinite posi-
tive universal quantifiers in a sound way. The situation jzdhess for arbitrary axioms or hypotheses, but
infinite quantifiers arising in well-behaved definitions ¢@nencoded soundly. We describe Nunchaku's
encoding of recursive functions_[37], because it is one efriiost crucial phases of the translation
pipeline and it illustrates theSSERTING construct in a comparatively simple setting.

Consider the following factorial example:

6 Extending Nunchaku to Type Theory

rec fact :int — int :=
vn. factn= (IFN< 0O THEN 1ELSEn = fact (n—1)).
val m: int.
goal fact m> 100
(We conveniently assume that Nunchaku has a standard raftioteger arithmetic, as provided by its
backend CVC4.) The encoding restricts quantificatiotfisatis domain to an unspecified, but potentially

finite, typeasac that is isomorphic to a subset fafct’'s argument type and introduces projections. :
Qfact — int aNdASSERTING guards throughout the problem, as follows:

val fact :int — int.
axiom V(a: @fact). fact (Yfact @) = (IF Yfact a< O THEN 1
ELSE Yfact @* (fact (Yfact a— 1) ASSERTING 3(D: @fact). Yfact D= Yfact a—1)).
val m:int.
goal (fact m ASSERTING 3(b: @fact)- Yfact b= m) > 100
The guards are propagated outward until they reach a pethcontext, at which point they can be
asserted using standard connectives:
val fact:int — int.
axiom V(a: @fact)- fact (Yfact @) = (IF Yfact @< O THEN 1 ELSE Yfacr @ * fact (yface a— 1)
AN Y a< oA El(b : a’fact)- Yfact b= Yfact d— 1)'
val m:int.
goal fact m> 100A 3(b: @fact)- Yfact D=m.

The guards ensure that the result of recursive functiors talihspected (i.e., influences the truth value
of the problem) only if the arguments are in the sulasgt, for which the function is axiomatized.

4 Encoding Dependent Datatypes

We propose an extension to Nunchaku’s type system with alsiftgvor of dependent types. We as-
sume a finite hierarchy of sorts. A Coq frontend would needdadate the problem’s hierarchy of
universes. Our encoding is similar to the one proposed byh¥aand Melham [24]. We, too, erase
dependent parameters from types and use additional pteslitaenforce constraints that would be lost
otherwise—with the addition of dependent (co)datatyp@s(cb)datatypes, we allow term parameters
(such as the length of a list, of typat) to occur as uniform parameters or as indices (i.e., eacstiean
tor can have a different value for this parameter), but tygremeters should occur uniformly. We only
forbid polymorphic recursion (type indices), because ia$ compatible with the monomorphization
step Nunchaku currently relies on.

In general, we consider dependent (co)datatype definitibtige form

(co)datat X @ :=
ci:ol—rtla

ook —rtka
whereX := (X)), is the tuple of term variables on whiehdependsg := (), is the tuple of type

variables, the typeso-}‘)?:mf’(ck) are the types of the arguments of tkiééa constructor, and the terms

S. Cruanes and J. C. Blanchette 7

tk := ()M, are the term arguments of theh constructor’s return type. More elaborate definitions,
such as those interleaving type and term parameters in mivigaie ways, are beyond the scope of this
approach. We are aiming for a practical balance betweeresgpeness and ease of implementation.

Let7’ @ be the encoding af where all term arguments have been removed. We introducedicpte
inv,, defined inductively (ifr is a datatype) or coinductively (if is a codatatype), that enforces the
correspondence betweg&mandr’ @:

(co)pred inv, : Ma. @ — 7 @ — prop :=
ko [VR(yriay) ... (Y als;rity(ck))‘

AL (g~ mes @y

The predicatenv. has one clause per constructgrof 7, which ensures that if the invariant holds for
every argumen@yj)?itly(ck) of ¢k that has type (a recursive instance @}, it also holds forck @ .

When encoding terms, we process binders on dependentigttypriables recursively as follows:
Wit T U ¢ becomesvv: 7 T inv: T v= ¢, and a functioni(x: v T T). v is translated tol(x :

7/ 0). (v ASSERTING inv, T X).

Functions whose type depends on terms remain parametdmnyztiubse terms after the translation,
but their definition specifies a precondition that links tert parameters to the encoded dependent type.
The use ofASSERTING to encode the precondition ensures that the function isuated only if the
condition is met, irrespective of the context (positivegaiive, or unpolarized) of the function. Finally,
some specific constructs such as equality (in Coq, equali@ydependent datatype) are translated directly
into Nunchaku counterparts.

As an example, consider the type of vectors of lengthiere,n is an index, and is a uniform type
parameter:

data vec : nat — type — type ;=
nile : vec 0
| Y(n:nat) (Xx:a)(l:vecna).consa X|:vec (Sn) a.

The encoded typeec’ corresponds to the datatype of finite lists, and the invaigan

pred invyec : nat — vec’ @ — prop =
invyec O (nil @)
| V(n:nat) (X: @) (l:vec @). invyec N1 = invyec (SN) (consa x1).

A formulaV(v: vec n 7). ¢ is translated t&/(v : vec’ 7). invyec N V= ¢. A function A(v:vec n7).tis
translated tol(v : vec’ 7). (t ASSERTING invyec N'V).
Thus, the function returning the length of a vector(l : vec n @). n, becomes

an(l:vec’ @). (N ASSERTING invyec N)
Theappend functionAmn(l; : vec ma) (12 : vec n). t (omitting the body) becomes
amn(ly i vec’ @) (12 : vec @). (t ASSERTING invyec M Iy Ainvyec N 1)

And themult function that multiplies two matriceam nk(A : matrix m n) (B : matrix n k). t, returning
a value of typematrix m k, becomes

Am n k(A: matrix') (B : matrix’). (t ASSERTING inVmatrix M N AA inVinatrix N K B)

8 Extending Nunchaku to Type Theory

5 Encoding Dependent Records and Type Classes

Type classes are a powerful tool for abstraction in CoqdiéaHOL, and other proof assistants [41, 45].

However, in dependently typed proofs assistants such as t@eg are usually encoded as dependent
records combining types, values, and proofs. We assuméyjpatlasses have been explicitly resolved
by the frontend’s type inference and focus on their reptasiem as a record of values and propositions.
Consider the following example from basic algebra:

class monoid awhere

e:a

op:a—a—a

left_neutral : VX. op e X = X

assoc:VXyzop (op Xy) Zz=op X (opy 2.
This definition of monoids can be encoded in a straightfodwaay as a dependent record—that is, a
datatype with a single four-argument constructor. The dimgpfrom Sectiorh 4 could then be applied.
Here, we propose a more specific encoding that avoids intnogwan inductive predicat@vmoncid. This
transformation does not use dependent types, and its siluitontains the required invariants of each
type class, thereby requiring models to satisfy them.

Following our proposed scheme, a type class is translatedaimondependent datatype with one
constructor whose arguments are the data fields @andop for monoid). The proofs of the axioms
can be erased, since they serve no purpose for model findidghe additional propertidsft_neutral
andassoc are directly inserted at appropriate places in the problem.

The definition ofmonoid is translated to

iNStmonoid : MNa. a— (a— a— a) — monoid a.

pred left_neutralmonoid : M@ monoid a — prop :=
Ve op (VX op e Xx= X) = left_neutralmonoid & (iNStmonoid & € 0P .

pred assoCmonoid - I1a monoid a — prop :=
Ve op (Vxyzop(op Xy z=0p X(0pY 2)) = ass0Cmonoid & (iNStmonoid @ € OP.
A function definition
recf:lMa monoida=a—r1:
V(x:a).fx=t.
is translated to
recf:lMa monoida—a—r1:
V(x:a). fX=(t ASSERTING left_neutralonoid @ /A aSSOCmonoid &) -
In a proof assistant, users must explicitly register typeatances of type classes. For example,
registeringnat as amonoid instance might involve some syntax such as
instance monoid nat where
e=0
op = (+)
left_neutral = (proof of left_neutral)
assoc = (proof of assoc).
These would not have to be specified to Nunchaku; in a semseiting, any type that satisfies the type
class axioms would be considered a member of the type cssegsentially the same reason, only defi-
nitions and axioms need to be specified in Nunchaku problantsnot derived lemmas.) Nonetheless, it
might be more efficient to provide the instantiations to Nalal, so that it can eliminate true conditions
such aseft_neutralmonoid Nat A assoCmonoid Nat that can arise as a result of its monomorphization phase.

S. Cruanes and J. C. Blanchette 9

6 Reated Work

There are many competing approaches to refuting logicalfitas. The main ones afi@ite model find-
ing andcode executianAlternatives include infinite model generation [11], ctarexample-producing
decision procedures [1L3], model checkinhg![17], and satmat1].

Finite model finding consists of enumerating all potentiaitéi models, starting with a cardinality of
one for the domains. Some model finders explore the searde siyactly; FINDER[[40], SEM[[46],
Alloy’s precursor [22], and Mace versions 3 and 4/[30] arehid type. Other tools reduce the problem
to propositional satisfiability and invoke a SAT solver;dbénclude early versions of Mace (or MACE)
[31], Paradox([16], Kodkod [43] and its frontend Alldy [23jnd FM-Darwin[[8]. Finally, some theorem
provers implement finite model finding on top of their proofccdus; this is the case for KIV_[35],
iProver [25], and CVC4]38]. To make finite model finding mosetul, techniques have been developed
to search for partial fragments of infinite modeld [6/19/3542)].

The idea with code execution is to generate test inputs aalia@e the goal, seen as a functional
program. For Haskell, QuickChedk [15] generates randomtg)smallCheck [39] systematically enu-
merates inputs starting with small ones, and Lazy SmalliCK@®] relies on narrowing to avoid eval-
uating irrelevant subterms. A promising combination of ted model checking and narrowing is
implemented in HBMC, the Haskell Bounded Model Checker [14]

In proof assistants, Refute [44] and Nitpick [8] for Isak#HOL are based on finite model finding.
QuickCheck-like systems have been developed for Agda [28helle/HOL [10], PVS[[33], FoCaLize
[12], and now Coq with QuickChick [34]. Agsy for Agda[27] etops narrowing. Isabelle’s Quickcheck
combines random testing, bounded exhaustive testing,amolwing in one tool[10]. Finally, ACLZ[29]
combines random testing and theorem proving.

Our experience with Isabelle is that Nitpick and Quickchéelve complementary strengths and
weaknesses [5, Section 3.6] and that it would be a mistakelyoon a single strategy. For example,
debugging the axiomatic specification of the+Cmemory model([9] was a heavy combinatorial task
where Nitpick’'s SAT solving excelled, whereas for the folizetion of a Java-like languagé [28] it
made more sense to develop an executable specification asiceiQuickcheck. Nunchaku currently
stands firmly in the finite model finding world, but we plan tovelop an alternative translation pipeline
to generate Haskell code and invoke QuickCheck, SmallGhexy SmallCheck, and HBMC.

7 Conclusion

Nunchaku supports polymorphic higher-order logic by aeseof transformations that yield a first-order
problem suitable for finite model finding. This paper introdd further transformations that extend the
translation pipeline to support dependent types and tygesebk as found in Coq and similar systems.
More work is necessary to fully specify these transfornregjgrove them correct, and implement them.
We plan an integration in Coq but will happily collaboratetwihe developers of other systems to build
further frontends; in particular, we are already in contaith the developers of Lean, a promising new
proof assistant based on type theory.

We generally contend that too much work has gone into engimggéhe individual proof assistants,
and too little into developing compositional methods armalgavith a broad applicability across systems.
Nunchaku is our attempt at changing this state of affair€éomnterexample generation.

10 Extending Nunchaku to Type Theory

Acknowledgment We are grateful to the anonymous reviewers for making maafuusomments and
suggestions and for pointing to related work. We also thamskkMbummerfield, who suggested many
textual improvements. Cruanes is supported by the Inriangogical development action “Contre-
exemples utilisables par Isabelle et Coq” (CUIC). Nunchakuwld not exist today had it not been for
the foresight and support of Stephan Merz, Andrew Reynaldd,Cesare Tinelli.

References

[1] Leo Bachmair & Harald Ganzinger (2001Resolution theorem proving In Alan Robinson & Andrei
Voronkov, editorsHandbook of Automated ReasonjngElsevier, pp. 19—-99.

[2] Clark Barrett, Christopher L. Conway, Morgan Detersahé Hadarean, Dejan Jovanovic, Tim King, Andrew
Reynolds & Cesare Tinelli (2011£VC4 In Ganesh Gopalakrishnan & Shaz Qadeer, edit6A7 2011,
LNCS6806, Springer, pp. 171-177, dod.. 1007/978-3-642-22110-1_14.

[3] Peter Baumgartner, Alexander Fuchs, Hans de Nivelle &@e Tinelli (2009)Computing finite models by
reduction to function-free clause logid. Applied Logic7(1), pp. 58—74, doi:0.1016/j.jal.2007.07.
005.

[4] Yves Bertot & Pierre Castéran (2004nteractive Theorem Proving and Program Development: @og’
The Calculus of Inductive ConstructiarSpringer.

[5] Jasmin Christian Blanchette (201utomatic Proofs and Refutations for Higher-Order Lodih.D. thesis,
Technische Universitat Miinchen.

[6] Jasmin Christian Blanchette (2018elational analysis of (co)inductive predicates, (cojintive datatypes,
and (co)recursive functionsSoftw. Qual. J21(1), pp. 101-126, ddi0.1007/s11219-011-9148-5.

[7] Jasmin Christian Blanchette, Cezary Kaliszyk, Lawe Paulson & Josef Urban (201@tammering
towards QED J. Formal. Reasonirg(1), pp. 101-148, dain.6092/issn.1972-5787/4593.

[8] Jasmin Christian Blanchette & Tobias Nipkow (201R)tpick: A counterexample generator for higher-order
logic based on a relational model findetn Matt Kaufmann & Lawrence C. Paulson, editoidP 201Q
LNCS6172, Springer, pp. 131-146, di0:. 1007/978-3-642-14052-5_11.

[9] Jasmin Christian Blanchette, Tjark Weber, Mark Battgo® Owens & Susmit Sarkar (201 1Nitpicking
C++ concurrency In: PPDP 201]ACM, pp. 113-124, doi:0.1145/2003476.2003493.

[10] Lukas Bulwahn (2012)The new Quickcheck for Isabelle;: Random, exhaustive antaioriesting under
one roof In Chris Hawblitzel & Dale Miller, editorsCPP 2012LNCS 7679, Springer, pp. 92—-108, dbd:.
1007/978-3-642-35308-6_10.

[11] Ricardo Caferra, Alexander Leitsch & Nicolas Pelti2004): Automated Model BuildingApplied Logic31,
Springer.

[12] Matthieu Carlier, Catherine Dubois & Arnaud Gotliel®(2): A first step in the design of a formally verified
constraint-based testing tool: FocalTegt Achim D. Brucker & Jacques Julliand, editofBAP 2012 LNCS
7305, Springer, pp. 35-50, do@.1007/978-3-642-30473-6_5.

[13] Amine Chaieb & Tobias Nipkow (2008)Proof synthesis and reflection for linear arithmetid. Autom.
Reasoning1(1), pp. 33-59, doi0n.1007/s10817-008-9101-x.

[14] Koen Claessen (2016): Private communication.

[15] Koen Claessen & John Hughes (200QuickCheck: A lightweight tool for random testing of Hasleo-
grams In: ICFP ‘00 ACM, pp. 268-279, doi:0.1145/357766.351266.

[16] Koen Claessen & Niklas Sorensson (200Bew techniques that improve MACE-style model findihyg
MODEL.

[17] Edmund M. Clarke, Jr., Orna Grumberg & Doron A. Peledd@P@ Model CheckingMIT Press.

http://dx.doi.org/10.1007/978-3-642-22110-1_14
http://dx.doi.org/10.1016/j.jal.2007.07.005
http://dx.doi.org/10.1016/j.jal.2007.07.005
http://dx.doi.org/10.1007/s11219-011-9148-5
http://dx.doi.org/10.6092/issn.1972-5787/4593
http://dx.doi.org/10.1007/978-3-642-14052-5_11
http://dx.doi.org/10.1145/2003476.2003493
http://dx.doi.org/10.1007/978-3-642-35308-6_10
http://dx.doi.org/10.1007/978-3-642-35308-6_10
http://dx.doi.org/10.1007/978-3-642-30473-6_5
http://dx.doi.org/10.1007/s10817-008-9101-x
http://dx.doi.org/10.1145/357766.351266

S. Cruanes and J. C. Blanchette 11

[18] Denis Cousineau, Damien Doligez, Leslie Lamport, 8t&pMerz, Daniel Ricketts & Hernan Vanzetto
(2012): TLA" proofs In Dimitra Giannakopoulou & Dominique Méry, editor&M 2012 LNCS 7436,
Springer, pp. 147-154, daid.1007/978-3-642-32759-9_14.

[19] Andriy Dunets, Gerhard Schellhorn & Wolfgang Reif (B)1Automated flaw detection in algebraic specifi-
cations J. Autom. Reasoning5(4), pp. 359—395, ddi0.1007/s10817-010-9166-1.

[20] Peter Dybjer, Qiao Haiyan & Makoto Takeyama (200@pmbining testing and proving in dependent type
theory In David A. Basin & Burkhart Wolff, editorsTPHOLs 2003LNCS 2758, Springer, pp. 188-203,
doi;10.1007/10930755_12.

[21] Walter Guttmann, Georg Struth & Tjark Weber (201J3utomating algebraic methods in Isabelldn
Shengchao Qin & Zongyan Qiu, editorkCFEM 2011 LNCS 6991, Springer, pp. 617—632, duob.. 1007/
978-3-642-24559-6_41.

[22] Daniel Jackson (1996Nitpick: A checkable specification languade: FMSP '96 pp. 60—69.
[23] Daniel Jackson (2006Boftware Abstractions: Logic, Language, and Analysi$T Press.

[24] Bart Jacobs & Tom Melham (1993)ranslating dependent type theory into higher order logicM. Bezem
& J.F. Groote, editorsTLCA 1993 LNCS 664, Springer, pp. 209-229, dod.. 1007/BFb0037108.

[25] Konstantin Korovin (2013):Non-cyclic sorts for first-order satisfiabilityIn Pascal Fontaine, Christophe
Ringeissen & Renate A. Schmidt, editol0oCoS 2013LNCS8152, Springer, pp. 214-228, dui:. 1007/
978-3-642-408385-4_15.

[26] Viktor Kuncak & Daniel Jackson (2005Relational analysis of algebraic datatypds Michel Wermelinger
& Harald Gall, editorsESEC/FSE 2005ACM, pp. 207-216, d0i:0.1145/1081706.1081740.

[27] Fredrik Lindblad (2007)Property directed generation of first-order test daten Marco Morazan, editor:
TFP 2007 Intellect, pp. 105-123.

[28] Andreas Lochbihler & Lukas Bulwahn (2011Animating the formalised semantics of a Java-like language
In Marko van Eekelen, Herman Geuvers, Julien Schmalz & Fyeieklijk, editors:ITP 2011 LNCS 6898,
Springer, pp. 216-232, daiD.1007/978-3-642-22863-6_17.

[29] Panagiotis Manolios (2013 ounterexample generation meets interactive theoremmpyoCurrent results
and future opportunitiedn Sandrine Blazy, Christine Paulin-Mohring & David Pictig, editors:I TP 2013
LNCS7998, Springer, p. 18, ddi0.1007/978-3-642-39634-2_4.

[30] William McCune:Prover9 and Mace4http://www.cs.unm.edu/~mccune/prover9/.

[31] William McCune (1994):A Davis—Putnam program and its application to finite firster model search:
guasigroup existence problemBechnical Report, Argonne National Laboratory.

[32] Tobias Nipkow, Lawrence C. Paulson & Markus Wenzel (200sabelle/HOL: A Proof Assistant for Higher-
Order Logic LNCS2283, Springer.

[33] Sam Owre (2006)Random testing in PV3n: AFM '06.

[34] Zoe Paraskevopoulou, Catalin Hritcu, Maxime Déhé&gmnidas Lampropoulos & Benjamin C. Pierce (2015):
Foundational property-based testinigp Christian Urban & Xingyuan Zhang, editor§:P 2015 LNCS9236,
Springer, pp. 325-343, daiD.1007/978-3-319-22102-1_22.

[35] Wolfgang Reif, Gerhard Schellhorn & Andreas Thums (PO@-law detection in formal specificationgn
Rajeev Goré, Alexander Leitsch & Tobias Nipkow, editdtBCAR 2001 LNCS2083, Springer, pp. 642-657,
doi:10.1007/3-540-45744-5_52.

[36] Andrew Reynolds & Jasmin Christian Blanchette (201A8)decision procedure for (co)datatypes in SMT
solvers In Amy Felty & Aart Middeldorp, editorsCADE-25 LNCS 9195, Springer, pp. 197-213, dub..
1007/978-3-319-21401-6_13.

[37] Andrew Reynolds, Jasmin Christian Blanchette, Simoma@es & Cesare Tinelli (2016Model finding for
recursive functions in SMTIn N. Olivetti & A. Tiwari, editors: [JCAR 2016 LNCS 9706, Springer.

http://dx.doi.org/10.1007/978-3-642-32759-9_14
http://dx.doi.org/10.1007/s10817-010-9166-1
http://dx.doi.org/10.1007/10930755_12
http://dx.doi.org/10.1007/978-3-642-24559-6_41
http://dx.doi.org/10.1007/978-3-642-24559-6_41
http://dx.doi.org/10.1007/BFb0037108
http://dx.doi.org/10.1007/978-3-642-40885-4_15
http://dx.doi.org/10.1007/978-3-642-40885-4_15
http://dx.doi.org/10.1145/1081706.1081740
http://dx.doi.org/10.1007/978-3-642-22863-6_17
http://dx.doi.org/10.1007/978-3-642-39634-2_4
http://www.cs.unm.edu/~mccune/prover9/
http://dx.doi.org/10.1007/978-3-319-22102-1_22
http://dx.doi.org/10.1007/3-540-45744-5_52
http://dx.doi.org/10.1007/978-3-319-21401-6_13
http://dx.doi.org/10.1007/978-3-319-21401-6_13

12 Extending Nunchaku to Type Theory

[38] Andrew Reynolds, Cesare Tinelli, Amit Goel, Sava KesMorgan Deters & Clark Barrett (2013puantifier
instantiation techniques for finite model finding in SMiT Maria Paola Bonacina, edito€ADE-24 L NCS
7898, Springer, pp. 377-391, doi.. 1007/978-3-642-38574-2_26.

[39] Colin Runciman, Matthew Naylor & Fredrik Lindblad (28 SmallCheck and Lazy SmallCheck: Automatic

exhaustive testing for small valuesn Andy Gill, editor: Haskell 2008 ACM, pp. 37-48, doit0.1145/
1411286.1411292

[40] John K. Slaney (1994)FINDER: Finite domain enumerator—System descriptitm Alan Bundy, editor:
CADE-12 LNCS814, Springer, pp. 798-801, dod.. 1007/3-540-58156-1_63.

[41] Matthieu Sozeau & Nicolas Oury (2008)irst-class type classes In Otmane Ait Mohamed, César
Mufioz & Sofiene Tahar, editorsTPHOLs 2008 LNCS 5170, Springer, pp. 278-293, dui..1007/
978-3-540-71067-7_23.

[42] Philippe Suter, Ali Sinan Kdksal & Viktor Kuncak (20%1Satisfiability modulo recursive programis Eran
Yahav, editor:SAS 2011 LNCS 6887, Springer, pp. 298-315, dui:.. 1007/978-3-642-23702-7_23.

[43] Emina Torlak & Daniel Jackson (2007Kodkod: A relational model finderin Orna Grumberg & Michael
Huth, editors:TACAS 2007 LNCS 4424, Springer, pp. 632—647, doi:.. 1007/978-3-540-71209-1_49.

[44] Tjark Weber (2008)SAT-Based Finite Model Generation for Higher-Order Lodih.D. thesis, Technische
Universitat Minchen.

[45] Markus Wenzel (1997)Type classes and overloading in higher-order loditElsa L. Gunter & Amy Felty,
editors: TPHOLs 1997LNCS 1275, Springer, pp. 307-322, doi:. 1007 /BFb0028402.

[46] Jian Zhang & Hantao Zhang (19953EM: A system for enumerating modela Chris S. Mellish, editor:
IJCAI-95, 1, Morgan Kaufmann, pp. 298-303.

http://dx.doi.org/10.1007/978-3-642-38574-2_26
http://dx.doi.org/10.1145/1411286.1411292
http://dx.doi.org/10.1145/1411286.1411292
http://dx.doi.org/10.1007/3-540-58156-1_63
http://dx.doi.org/10.1007/978-3-540-71067-7_23
http://dx.doi.org/10.1007/978-3-540-71067-7_23
http://dx.doi.org/10.1007/978-3-642-23702-7_23
http://dx.doi.org/10.1007/978-3-540-71209-1_49
http://dx.doi.org/10.1007/BFb0028402

	1 Introduction
	2 Overview of Nunchaku
	3 Encoding Recursive Functions
	4 Encoding Dependent Datatypes
	5 Encoding Dependent Records and Type Classes
	6 Related Work
	7 Conclusion

