
J.C. Blanchette and C. Kaliszyk:
Hammers for Type Theories (HaTT’16)
EPTCS 210, 2016, pp. 13–20, doi:10.4204/EPTCS.210.4

c© Ł. Czajka & C. Kaliszyk
This work is licensed under the
Creative Commons Attribution License.

Goal Translation for a Hammer for Coq (Extended Abstract)

Łukasz Czajka
lukasz.czajka@uibk.ac.at

University of Innsbruck, Austria

Cezary Kaliszyk
cezary.kaliszyk@uibk.ac.at

University of Innsbruck, Austria

Hammers are tools that provide general purpose automation for formal proof assistants. Despite the
gaining popularity of the more advanced versions of type theory, there are no hammers for such sys-
tems. We present an extension of the various hammer components to type theory: (i) a translation of
a significant part of the Coq logic into the format of automated proof systems; (ii) a proof reconstruc-
tion mechanism based on a Ben-Yelles-type algorithm combined with limited rewriting, congruence
closure and a first-order generalization of the left rules ofDyckhoff’s system LJT.

1 Introduction

Justifying small proof steps is usually a significant part ofthe process of formalizing proofs in anin-
teractive theorem proving(ITP), or proof assistant, system. Many of such goals would be considered
trivial by mathematicians. Still, state-of-the-art ITPs require the user to spend an important part of the
formalization effort on them. The main points that constitute this effort are usually library search, minor
transformations on the already proved theorems (such as reordering assumptions or reasoning modulo
associativity-commutativity), as well as combining a small number of simple known lemmas. To reduce
this effort various automation techniques have been conceived, including techniques from automated rea-
soning and domain specific decision procedures. The strongest general propose automation technique,
available for various interactive theorem provers today isprovided by “hammers” [10].

Hammers are proof assistant tools that employ external automated theorem provers (ATPs) in order
to automatically find proofs of user given conjectures. There are three main components of a hammer:

• Lemma selection (also called relevance filtering or premiseselection) that heuristically chooses a
subset of the accessible lemmas that are likely useful for the given conjecture.

• Translation (encoding) of the user given conjecture together with the selected lemmas to the logics
and input formats of automated theorem provers (ATPs). The focus is usually on first-order logic
as the majority of the most efficient ATPs today support this foundation. The automated systems
are in turn used to either find an ATP proof or just further narrow down the subset of lemmas to
precisely those that are necessary in the proof.

• Proof reconstruction, which uses the obtained informationfrom the successful ATP run, to reprove
the lemma in the logic of the proof assistant.

Robust hammers exist for proof assistants based on higher-order logic (Sledgehammer [27] for Is-
abelle/HOL [33], HOLyHammer [20] for HOL Light [18] and HOL4[31]) or dependently typed set
theory (MizAR [21] for Mizar [7, 34, 6]). The general-purpose automation provided by the most ad-
vanced hammers is able to solve 40–50% of the top-level goalsin various developments [10], as well as
more than 70% of the user-visible subgoals [11], and as such has been found very useful in various proof
developments [17].

Despite the gaining popularity of the more advanced versions of type theory, implemented by systems
such as Agda [12], Coq [8], Lean [25], and Matita [4], there are no hammers for such systems. The

http://dx.doi.org/10.4204/EPTCS.210.4
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

14 Goal Translation for a Hammer for Coq (Extended Abstract)

construction of such a tool has so far been hindered by the lack of a usable encoding component, as well
as by comparatively weak proof reconstuction.

For the proof assistants whose logics are based on the Calculus of Constructions and its extensions,
the existing encodings in first-order logic so far cover onlylimited fragments of the source logic [1, 32, 9].
Why3 [16] provides a translation from its own logic [15] (which is a subset of the Coq logic, including
features like rank-1 polymorphism, algebraic data types, recursive functions and inductive predicates)
to the format of various first-order provers (in fact Why3 hasbeen initially used as a translation back-
end for HOLyHammer). Recently, an encoding of the dependently typed higher-order logic of F∗ into
first-order logic has also been developed [2].

The built-in HOL automation is able to reconstruct the majority of the automatically found proofs
using either internal proof search [19] or source-level reconstruction. The internal proof search mecha-
nisms provided in Coq, such as thefirstorder tactic [13], have been insufficient for this purpose so far.
Matita’s ordered paramodulation [5] is able to reconstructmany goals with up to two or three premises,
and the congruence-closure based internal automation techniques in Lean [24] are also promising.

The SMTCoq [3] project has developed an approach to use external SAT and SMT solvers and verify
their proof witnesses. Small checkers are implemented using reflection for parts of the SAT and SMT
proof reconstruction, such as one for CNF computation and one for congruence closure. The procedure
is able to handle Coq goals in the subset of the logic that corresponds to the logics of the input systems.

Contributions. We present our recently developed proof advice components for type theory and systems
based on it. We first introduce an encoding of the Calculus of Inductive Constructions, including the
additional logical constructions introduced by the Coq system, in untyped first-order logic with equality.
We implement the translation and evaluate it experimentally on the standard library of the Coq proof
assistant. We advocate that the encoding is sufficient for a hammer system for Coq: the success rates
are comparable to those demonstrated by early hammer systems for Isabelle/HOL and Mizar, while the
dependencies used in the ATP proofs are most often sufficientto prove the original theorems. Strictly
speaking, our translation is neither sound nor complete. However, our experiments suggest that the
encoding is “sound enough” to be usable. Moreover, we believe that a “core” version of the translation
is sound and we are currently working on a proof of this fact.

Secondly, we present a proof reconstruction mechanism based on a Ben-Yelles-type procedure com-
bined with a first-order generalization of the left rules of Dyckhoff’s LJT, congruence closure and heuris-
tic rewriting. With this still preliminary proof search procedure we are able to reprove almost 90% of the
problems solved by the ATPs, using the dependencies extracted from the ATP output.

2 Translation

In this section we introduce an encoding of (a close approximation of) the Calculus of Inductive Con-
structions into untyped first-order logic with equality. The encoding should be a practical one, which
implies that its general theoretical soundness is not the main focus, i.e., of course the translation needs to
be “sound enough” to be usable, but it is more important that the encoding is efficient enough to provide
practically useful information about the necessary proof dependencies. In particular, the encoding needs
to be shallow, meaning that Coq terms of type Prop are translated directly to corresponding first-order
formulas. Our translation is in fact unsound, e.g., it assumes proof irrelevance and ignores certain uni-
verse constraints. However, we believe that under the assumption of proof irrelevance a “core” version
of the translation is sound, and we are currently working on aproof.

Ł. Czajka & C. Kaliszyk 15

Below we present a variant of the translation for a fragment of the logic of Coq. The intention here
is to provide a general idea, but not to describe the encodingin detail. In the first-order language we
assume a unary predicateP, a binary predicateT and a binary function symbol @. Usually, we writets
instead of @(t, s).

For the sake of efficiency, terms of type Prop are encoded directly as FOL formulas using a func-
tion F . Terms that have type Type but not Prop are encoded using a function G as guards which
essentially specify what it means for an object to have the given type. For instance,∀ f : τ.ϕ where
τ = Πx : α.β is translated to∀ f .G (τ, f) → F (ϕ) whereG (τ, f) = ∀x.G (α, x) → G (β, f x). SoG (τ, f)
says that an objectf has typeτ= Πx : α.β if for any objectx of typeα, the applicationf x has typeβ.
FunctionF encoding propositions as FOL formulas is defined by:

• If Γ ⊢ t : Prop thenFΓ(Πx : t.s) = FΓ(t)→ FΓ,x:t(s).

• If Γ 6⊢ t : Prop thenFΓ(Πx : t.s) = ∀x.GΓ(t, x)→ FΓ,x:t(s).

• Otherwise, if none of the above apply,FΓ(t) = P(CΓ(t)).

FunctionG encoding types as guards is defined by:

• If t = Πx : t1.t2 andΓ ⊢ t1 : Prop thenGΓ(Πx : t1.t2, s) = FΓ(t1)→ GΓ,x:t1(t2, s).

• If t = Πx : t1.t2 andΓ 6⊢ t1 : Prop thenGΓ(Πx : t1.t2, s) = ∀x.GΓ(t1, x)→ GΓ,x:t1(t2, sx).

• Otherwise, whent is not a productGΓ(t, s) = T(u,CΓ(t)).

FunctionC encoding terms as FOL terms is defined by:

• CΓ(b) = b for b being a variable or a constant,

• CΓ(ts) is equal to:

– CΓ(t) if Γ ⊢ s : A : Prop for someA,

– CΓ(t)CΓ(s) otherwise.

• CΓ(Πx : t.s) = P~y for a fresh constantP where~y= FV(Πx : t.s) and

– if Γ ⊢ (Πx : t.s) : Prop then∀~y.P~y↔ FΓ(Πx : t.s) is a new axiom,

– if Γ 6⊢ (Πx : t.s) : Prop then∀~yz.P~yz↔ GΓ(Πx : t.s,z) is a new axiom.

• CΓ(λ~x :~t.s) = F~y wheresdoes not start with a lambda-abstraction any more,F is a fresh constant,
~y= FV(λ~x : ~t.s) and∀~y.FΓ(∀~x : ~t.F~y~x= s) is a new axiom.

• CΓ(case(t,c,n,λ~a : ~α.λx : c~p~a.τ,λ ~x1 : ~τ1.s1, . . . ,λ ~xk : ~τk.sk)) = F ~y1~y2 for a fresh constantF where

– I(c : γ : κ := c1 : γ1 : κ1, . . . ,ck : γk : κk) ∈ E,

– Γ2 = ~y2 : ~ρ2 = FC(Γ; t),

– Γ1 = ~y1 : ~ρ1 = FC(Γ;λ~y2 : ~ρ2.t(λ~x1 : ~τ1.s1) . . .(λ~xk : ~τk.sk)),

– γi = Π~zi : ~βi .Π~xi : ~τi .σi for i = 1, . . . ,k,

– the following is a new axiom:

∀~y1.FΓ1(∀~y2 : ~ρ2 . (∃~z1 : ~β1.∃ ~x1 : ~τ1.t = c1~z1 ~x1∧F ~y1~y2 = s1)
∨ . . .

∨ (∃~zk : ~βk.∃ ~xk : ~τk.t = ck~zk ~xk∧F ~y1~y2 = sk))

16 Goal Translation for a Hammer for Coq (Extended Abstract)

Here t is the term matched on, the type oft has the formc~p~u, the integern denotes the number
of parameters (which is the length of~p), the typeτ[~u/~a, t/x] is the return type, i.e., the type of
the whole case expression,~a∩FV(~p) = /0, andsi[~v/~xi] is the value of the case expression if the
value oft is ci~p~v. The free variable context FC(Γ; t) of t in Γ is defined inductively: FC(/0;t) = /0;
FC(Γ, x : τ; t) = FC(Γ;λx : τ.t), x : τ if x∈ FV(t); and FC(Γ, x : τ; t) = FC(Γ; t) if x /∈ FV(t).

In the data exported from Coq there are three types of declarations: definitions, typing declarations
and inductive declarations. We briefly describe how all of them are translated.

A definition c= t : τ : κ is translated as follows.

• If κ = Prop then addF (τ) as a new axiom with labelc.

• If κ 6= Prop then

– addG (τ,c) as a new axiom,

– if τ= Prop then addc↔ F (t) as a new axiom with labelc,

– if τ= Set orτ= Type then add∀ f .c f ↔ G (t, f) as a new axiom with labelc,

– if τ /∈ {Prop,Set,Type} then add the equationc= C (t) as a new axiom with labelc.

A typing declarationc : τ : κ is translated as follows.

• If κ = Prop then addF (τ) as a new axiom with labelc.

• If κ 6= Prop then addG (τ,c) as a new axiom with labelc.

An inductive declarationI(c : τ : κ := c1 : τ1 : κ1, . . . ,cn : τn : κn) is translated as follows.

• Translate the typing declarationc : τ : κ.

• Translate each typing declarationci : τi : κ for i = 1, . . . ,n.

• Add axioms stating injectivity of constructors, axioms stating non-equality of different construc-
tors, and the “inversion” axioms for elements of the inductive type.

For inductive types also induction principles and recursordefinitions are translated.

The above only gives a general outline of the translation. Inpractice, we make a number of optimi-
sations, e.g., the arity optimisation by Meng and Paulson [23], or translating fully applied functions with
target type Prop directly to first-order predicates.

3 Reconstruction

We report on our work on proof reconstruction. We evaluate the Coq internal reconstruction mechanisms
includingtauto andfirstorder [13] on the original proof dependencies and on the ATP found proofs,
which are in certain cases more precise. In particularfirstorder seems insufficient for finding proofs
for problems created using the advice obtained from the ATP runs. This is partly caused by the fact that
it does not fully axiomatize equality, but even on problems which require only purely logical first-order
reasoning its running time is sometimes unacceptable.

The formulas that we attempt to reprove usually belong to fragments of intuitionistic logic low in the
Mints hierarchy [29]. Most of proved theorems follow by combining a few known lemmas. This raises a
possibility of devising an automated proof procedure optimized for these fragments of intuitionistic logic,
and for the usage of the advice obtained from the ATP runs. We implemented a preliminary version of a
Ben-Yelles-type procedure (essentiallyeauto-type proof search with a looping check) augmented with

Ł. Czajka & C. Kaliszyk 17

Prover Solved% Solved Sum% Sum Unique

Vampire 32.9 6839 32.9 6839 855
Z3 27.6 5734 34.9 7265 390
E Prover 25.8 5376 35.3 7337 72

any 35.3 7337 35.3 7337

Table 1: Results of the experimental evaluation on the 20803FOL problems generated from the propo-
sitions in the Coq standard library.

a first-order generalization of the left rules of Dyckhoff’ssystem LJT [14], the use of thecongruence
tactic, and heuristic rewriting using equational hypotheses.

It is important to note that while the external ATPs we employare classical and the translation
assumes proof irrelevance, the proof reconstruction phasedoes not assume any additional axioms. We
reprove the theorems in the intuitionistic logic of Coq, effectively using the output of the ATPs merely
as hints for our hand-crafted proof search procedure. Therefore, if the ATP proof is inherently classical
then proof reconstruction will fail. Currently, the only information from ATP runs we use is a list of
lemmas needed by the ATP to prove the theorem (these are addedto the context) and a list of constant
definitions used in the ATP proof (we try unfolding these constants and no others).

Another thing to note is that we do not use the information contained in the Coq standard library
during reconstruction. This would not make sense for our evaluation of the reconstruction mechanism,
since we try to reprove the theorems from the Coq standard library. In particular, we do not use any
preexisting hint databases available in Coq, not even the core database (we use theauto andeauto
tactics with thenocore option). Also, we do not use any domain-specific decision procedures available
as Coq tactics, e.g.,field, ring or omega.

4 Evaluation

We evaluated our translation on the problems generated fromall declarations of terms of type Prop in the
Coq standard library of Coq version 8.5. We used the following classical ATPs: E Prover version 1.9 [30],
Vampire version 4.0 [22] and Z3 version 4.0 [26]. The methodology was to measure the number of
theorems that the ATP could reprove from their extended dependencies within a time limit of 30 s for
each problem. The extended dependencies of a theorem are obtained by taking all constants occuring in
the proof term of the theorem in Coq standard library, and recursively taking all constants occuring in
the types and non-proof definitions of any dependencies extracted so far. Because of the use of extended
dependencies, the average number of generated FOL axioms for a problem is 193. We limited the
recursive extraction of extended dependencies to depth 2.

The evaluation was performed on a 48-core server with 2.2 GHzAMD Opteron CPUs and 320 GB
RAM. Each problem was always assigned one CPU core. Table 1 shows the results of our evaluation. The
column “Solved%” denotes the percentage (rounded to the first decimal place) of the problems solved by
a given prover, and “Solved” the number of problems solved out of the total number of 20803 problems.
The column “Sum%” denotes the percentage, and “Sum” the total number, of problems solved by the
prover or any of the provers listed above it. The column “Unique” denotes the number of problems the
given prover solved but no other prover could solve.

We also evaluated various proof reconstruction mechanismson the problems originating from ATP

18 Goal Translation for a Hammer for Coq (Extended Abstract)

Tactic Time Solved% Solved

yreconstr0 10s 26.8 1965
yreconstr 1s 83.1 6097
yreconstr 2s 85.8 6296
yreconstr 5s 87.5 6421
yreconstr 10s 88.1 6466
yreconstr 15s 88.2 6473
simple 1s 50.1 3674
firstorder’ 10s 69.6 5103
jprover 10s 56.1 4114

any 90.1 6609

Table 2: Results of the evaluation of proof reconstruction on the 7337 problems solved by the ATPs.

proofs of lemmas in the Coq standard library. In our setting,the Ben-Yelles-type algorithm mentioned
in the previous section tends to perform significantly better than the available Coq’s tactics. The results
of the evaluation are presented in Table 2. Our tactic (yreconstr) manages to reconstruct about 88% of
the reproved theorems. However, it needs to be remarked thatif we use the advice obtained from ATP
runs then about 50% of the the reproved theorems follow by a combination of hypothesis simplification,
the tacticsintuition, auto, easy, congruence and a few heuristics (tacticsimple). Moreover, the
yreconstr tactic without any hints (yreconstr0), i.e., without using any of the information obtained
from ATP runs, achieves a success rate of about 26%. The reconstruction success rate of thefirstorder
tactic combined with various heuristics is about 70% if generic axioms for equality are added to the
context (tacticfirstorder’). Thejp tactic (which integrates the intuitionistic first-order automated
theorem prover JProver [28] into Coq) combined with variousheuristics and equality axioms (tactic
jprover) achieves a reconstruction success rate of about 56%. This low success rate is explained by the
fact that in contrast to thefirstorder tactic thejp tactic cannot be parameterised by a tactic used at
the leaves of the search tree when no logical rule applies.

Acknowledgments. We thank the organizers of the First Coq Coding Sprint, especially Yves Bertot,
for the help with implementing Coq export plugins. We wish tothank Thibault Gauthier for the first
version of the Coq exported data, as as well as Claudio Sacerdoti-Coen for improvements to the exported
data and fruitful discussions on Coq proof reconstruction.This work has been supported by the Austrian
Science Fund (FWF) grant P26201.

References

[1] Andreas Abel, Thierry Coquand & Ulf Norell (2005):Connecting a Logical Framework to a First-Order
Logic Prover. In Bernhard Gramlich, editor:Frontiers of Combining Systems (FroCoS 2005), LNCS 3717,
Springer, pp. 285–301, doi:10.1007/11559306_17.

[2] Alejandro Aguirre, C̆at̆alin Hrit,cu, Chantal Keller & Nikhil Swamy (2016):From F∗ to SMT (Extended
Abstract). In: Hammers for Type Theories, HaTT 2016. To appear.

[3] Michaël Armand, Germain Faure, Benjamin Grégoire, Chantal Keller, Laurent Théry & Benjamin Werner
(2011):A Modular Integration of SAT/SMT Solvers to Coq through Proof Witnesses. In Jean-Pierre Jouan-

http://dx.doi.org/10.1007/11559306_17

Ł. Czajka & C. Kaliszyk 19

naud & Zhong Shao, editors:Certified Programs and Proofs (CPP 2011), LNCS7086, Springer, pp. 135–150,
doi:10.1007/978-3-642-25379-9_12.

[4] Andrea Asperti, Wilmer Ricciotti & Claudio Sacerdoti Coen (2014):Matita Tutorial. J. Formalized Reason-
ing 7(2), pp. 91–199, doi:10.6092/issn.1972-5787/4651.

[5] Andrea Asperti & Enrico Tassi (2007):Higher order Proof Reconstruction from Paramodulation-BasedRefu-
tations: The Unit Equality Case. In Manuel Kauers, Manfred Kerber, Robert Miner & Wolfgang Windsteiger,
editors:Mathematical Knowledge Management (MKM 2007), LNCS 4573, Springer, pp. 146–160, doi:10.

1007/978-3-540-73086-6_14.

[6] Grzegorz Bancerek (2003):On the structure of Mizar types. Electr. Notes Theor. Comput. Sci.85(7), pp.
69–85, doi:10.1016/S1571-0661(04)80758-8.

[7] Grzegorz Bancerek, Czeslaw Bylinski, Adam Grabowski, Artur Kornilowicz, Roman Matuszewski, Adam
Naumowicz, Karol Pak & Josef Urban (2015):Mizar: State-of-the-art and Beyond. In: Intelligent Computer
Mathematics - International Conference, CICM 2015, Washington, DC, USA, July 13-17, 2015, Proceedings,
pp. 261–279, doi:10.1007/978-3-319-20615-8_17.

[8] Yves Bertot (2008):A Short Presentation of Coq. In Otmane Aït Mohamed, César A. Muñoz & Sofiène
Tahar, editors:Theorem Proving in Higher Order Logics (TPHOLs 2008), LNCS5170, Springer, pp. 12–16,
doi:10.1007/978-3-540-71067-7_3.

[9] Marc Bezem, Dimitri Hendriks & Hans de Nivelle (2002):Automated Proof Construction in Type Theory
Using Resolution. J. Autom. Reasoning29(3-4), pp. 253–275, doi:10.1023/A:1021939521172.

[10] Jasmin C. Blanchette, Cezary Kaliszyk, Lawrence C. Paulson & Josef Urban (2016):Hammering towards
QED. J. Formalized Reasoning9(1), pp. 101–148, doi:10.6092/issn.1972-5787/4593. Available at
http://jfr.unibo.it/article/view/4593.

[11] Jasmin Christian Blanchette, David Greenaway, CezaryKaliszyk, Daniel Kühlwein & Josef Urban
(2016): A Learning-Based Relevance Filter for Isabelle/HOL. J. Autom. Reasoning, to appear.http://

cl-informatik.uibk.ac.at/cek/mash2.pdf.

[12] Ana Bove, Peter Dybjer & Ulf Norell (2009):A Brief Overview of Agda - A Functional Language with
Dependent Types. In Stefan Berghofer, Tobias Nipkow, Christian Urban & Makarius Wenzel, editors:The-
orem Proving in Higher Order Logics (TPHOLs 2009), LNCS 5674, Springer, pp. 73–78, doi:10.1007/

978-3-642-03359-9_6.

[13] Pierre Corbineau (2003):First-Order Reasoning in the Calculus of Inductive Constructions. In Stefano
Berardi, Mario Coppo & Ferruccio Damiani, editors:Types for Proofs and Programs (TYPES 2003), LNCS
3085, Springer, pp. 162–177, doi:10.1007/978-3-540-24849-1_11.

[14] Roy Dyckhoff (1992):Contraction-Free Sequent Calculi for Intuitionistic Logic. J. Symb. Log.57(3), pp.
795–807, doi:10.2307/2275431.

[15] Jean-Christophe Filliâtre (2013):One Logic to Use Them All. In Maria Paola Bonacina, editor:Interna-
tional Conference on Automated Deduction (CADE 2013), LNCS 7898, Springer, pp. 1–20, doi:10.1007/

978-3-642-38574-2_1.

[16] Jean-Christophe Filliâtre & Andrei Paskevich (2013):Why3 - Where Programs Meet Provers. In: European
Symposium on Programming (ESOP 2013), pp. 125–128, doi:10.1007/978-3-642-37036-6_8.

[17] Thomas Hales (2013–2014):Developments in Formal Proofs. Séminaire Bourbaki1086. abs/1408.6474.

[18] John Harrison (2009):HOL Light: An Overview. In Stefan Berghofer, Tobias Nipkow, Christian Urban &
Makarius Wenzel, editors:Theorem Proving in Higher Order Logics (TPHOLs 2009), LNCS5674, Springer,
pp. 60–66, doi:10.1007/978-3-642-03359-9_4.

[19] Joe Hurd (2003):First-Order Proof Tactics in Higher-Order Logic Theorem Provers. In Myla Archer, Ben Di
Vito & César Muñoz, editors:Design and Application of Strategies/Tactics in Higher Order Logics (STRATA
2003), NASA Technical ReportsNASA/CP-2003-212448, pp. 56–68. Available athttp://techreports.

larc.nasa.gov/ltrs/PDF/2003/cp/NASA-2003-cp212448.pdf.

http://dx.doi.org/10.1007/978-3-642-25379-9_12
http://dx.doi.org/10.6092/issn.1972-5787/4651
http://dx.doi.org/10.1007/978-3-540-73086-6_14
http://dx.doi.org/10.1007/978-3-540-73086-6_14
http://dx.doi.org/10.1016/S1571-0661(04)80758-8
http://dx.doi.org/10.1007/978-3-319-20615-8_17
http://dx.doi.org/10.1007/978-3-540-71067-7_3
http://dx.doi.org/10.1023/A:1021939521172
http://dx.doi.org/10.6092/issn.1972-5787/4593
http://jfr.unibo.it/article/view/4593
http://cl-informatik.uibk.ac.at/cek/mash2.pdf
http://cl-informatik.uibk.ac.at/cek/mash2.pdf
http://dx.doi.org/10.1007/978-3-642-03359-9_6
http://dx.doi.org/10.1007/978-3-642-03359-9_6
http://dx.doi.org/10.1007/978-3-540-24849-1_11
http://dx.doi.org/10.2307/2275431
http://dx.doi.org/10.1007/978-3-642-38574-2_1
http://dx.doi.org/10.1007/978-3-642-38574-2_1
http://dx.doi.org/10.1007/978-3-642-37036-6_8
http://arxiv.org/abs/1408.6474
http://dx.doi.org/10.1007/978-3-642-03359-9_4
http://techreports.larc.nasa.gov/ltrs/PDF/2003/cp/NASA-2003-cp212448.pdf
http://techreports.larc.nasa.gov/ltrs/PDF/2003/cp/NASA-2003-cp212448.pdf

20 Goal Translation for a Hammer for Coq (Extended Abstract)

[20] Cezary Kaliszyk & Josef Urban (2014):Learning-Assisted Automated Reasoning with Flyspeck. J. Autom.
Reasoning53(2), pp. 173–213, doi:10.1007/s10817-014-9303-3.

[21] Cezary Kaliszyk & Josef Urban (2015):MizAR 40 for Mizar 40. J. Autom. Reasoning55(3), pp. 245–256,
doi:10.1007/s10817-015-9330-8.

[22] Laura Kovács & Andrei Voronkov (2013):First-Order Theorem Proving and Vampire. In: Computer-Aided
Verification (CAV 2013), pp. 1–35, doi:10.1007/978-3-642-39799-8_1.

[23] Jia Meng & Lawrence C. Paulson (2008):Translating Higher-Order Clauses to First-Order Clauses. Journal
of Automated Reasoning40(1), pp. 35–60, doi:10.1007/s10817-007-9085-y.

[24] Leonardo de Moura & Daniel Selsam (2016):Congruence Closure in Intensional Type Theory. In: Interna-
tional Joint Conference on Automated Reasoning, IJCAR 2016. To appear.

[25] Leonardo Mendonça de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn & Jakob von Raumer (2005):
The Lean Theorem Prover. In Amy P. Felty & Aart Middeldorp, editors:International Conference on Auto-
mated Deduction (CADE 2005), LNCS9195, Springer, pp. 378–388, doi:10.1007/978-3-319-21401-6_

26.

[26] Leonardo Mendonça de Moura & Nikolaj Bjørner (2008):Z3: An Efficient SMT Solver. In C. R. Ra-
makrishnan & Jakob Rehof, editors:TACAS 2008, LNCS 4963, Springer, pp. 337–340, doi:10.1007/

978-3-540-78800-3_24.

[27] Lawrence C. Paulson & Jasmin Blanchette (2010):Three Years of Experience with Sledgehammer, a Practical
Link between Automated and Interactive Theorem Provers. In: 8th IWIL. Available athttp://www4.in.
tum.de/~schulz/PAPERS/STS-IWIL-2010.pdf.

[28] Stephan Schmitt, Lori Lorigo, Christoph Kreitz & Aleksey Nogin (2001):JProver : Integrating Connection-
Based Theorem Proving into Interactive Proof Assistants. In Rajeev Goré, Alexander Leitsch & Tobias
Nipkow, editors:Automated Reasoning, First International Joint Conference, IJCAR 2001, Siena, Italy, June
18-23, 2001, Proceedings, Lecture Notes in Computer Science2083, Springer, pp. 421–426, doi:10.1007/

3-540-45744-5_34.

[29] Aleksy Schubert, Paweł Urzyczyn & Konrad Zdanowski (2015): On the Mints Hierarchy in First-Order
Intuitionistic Logic. In Andrew M. Pitts, editor:Foundations of Software Science and Computation Struc-
tures (FoSSaCS 2015), Lecture Notes in Computer Science9034, Springer, pp. 451–465, doi:10.1007/

978-3-662-46678-0_29.

[30] Stephan Schulz (2013):System Description: E 1.8. In: Logic for Programming, Artificial Intelligence (LPAR
2013), pp. 735–743, doi:10.1007/978-3-642-45221-5_49.

[31] Konrad Slind & Michael Norrish (2008):A Brief Overview of HOL4. In Otmane Ait Mohamed, César
Muñoz & Sofiène Tahar, editors:TPHOLs 2008, LNCS 5170, Springer, pp. 28–32, doi:10.1007/

978-3-540-71067-7_6.

[32] Tanel Tammet & Jan M. Smith (1998):Optimized Encodings of Fragments of Type Theory in First-Order
Logic. J. Log. Comput.8(6), pp. 713–744, doi:10.1093/logcom/8.6.713.

[33] Makarius Wenzel, Lawrence C. Paulson & Tobias Nipkow (2008): The Isabelle Framework. In Otmane Aït
Mohamed, César A. Muñoz & Sofiène Tahar, editors:Theorem Proving in Higher Order Logics (TPHOLs
2008), LNCS 5170, Springer, pp. 33–38, doi:10.1007/978-3-540-71067-7_7.

[34] Freek Wiedijk (2007):Mizar’s Soft Type System. In: Theorem Proving in Higher Order Logics, 20th In-
ternational Conference, TPHOLs 2007, Kaiserslautern, Germany, September 10-13, 2007, Proceedings, pp.
383–399, doi:10.1007/978-3-540-74591-4_28.

http://dx.doi.org/10.1007/s10817-014-9303-3
http://dx.doi.org/10.1007/s10817-015-9330-8
http://dx.doi.org/10.1007/978-3-642-39799-8_1
http://dx.doi.org/10.1007/s10817-007-9085-y
http://dx.doi.org/10.1007/978-3-319-21401-6_26
http://dx.doi.org/10.1007/978-3-319-21401-6_26
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://www4.in.tum.de/~schulz/PAPERS/STS-IWIL-2010.pdf
http://www4.in.tum.de/~schulz/PAPERS/STS-IWIL-2010.pdf
http://dx.doi.org/10.1007/3-540-45744-5_34
http://dx.doi.org/10.1007/3-540-45744-5_34
http://dx.doi.org/10.1007/978-3-662-46678-0_29
http://dx.doi.org/10.1007/978-3-662-46678-0_29
http://dx.doi.org/10.1007/978-3-642-45221-5_49
http://dx.doi.org/10.1007/978-3-540-71067-7_6
http://dx.doi.org/10.1007/978-3-540-71067-7_6
http://dx.doi.org/10.1093/logcom/8.6.713
http://dx.doi.org/10.1007/978-3-540-71067-7_7
http://dx.doi.org/10.1007/978-3-540-74591-4_28

	1 Introduction
	2 Translation
	3 Reconstruction
	4 Evaluation

