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Hammers are tools that provide general purpose automatidorfmal proof assistants. Despite the
gaining popularity of the more advanced versions of typemehere are no hammers for such sys-
tems. We present an extension of the various hammer comfstoeype theory: (i) a translation of
a significant part of the Coq logic into the format of autondgieoof systems; (ii) a proof reconstruc-
tion mechanism based on a Ben-Yelles-type algorithm coetbivith limited rewriting, congruence
closure and a first-order generalization of the left ruleBpékhoff’'s system LJT.

1 Introduction

Justifying small proof steps is usually a significant parthed process of formalizing proofs in am-
teractive theorem proving TP), or proof assistantsystem. Many of such goals would be considered
trivial by mathematicians. Still, state-of-the-art ITRsgjuire the user to spend an important part of the
formalization effort on them. The main points that consétthis effort are usually library search, minor
transformations on the already proved theorems (such agaag assumptions or reasoning modulo
associativity-commutativity), as well as combining a dmaimber of simple known lemmas. To reduce
this effort various automation techniques have been ceedeincluding techniques from automated rea-
soning and domain specific decision procedures. The stsbiggmeral propose automation technique,
available for various interactive theorem provers todayrivided by “hammers’ [10].

Hammers are proof assistant tools that employ externah@atxl theorem provers (ATPS) in order
to automatically find proofs of user given conjectures. €hame three main components of a hammer:

e Lemma selection (also called relevance filtering or preraédection) that heuristically chooses a
subset of the accessible lemmas that are likely useful fogiten conjecture.

e Translation (encoding) of the user given conjecture tograthth the selected lemmas to the logics
and input formats of automated theorem provers (ATPs). ©bed is usually on first-order logic
as the majority of the most efficient ATPs today support thignation. The automated systems
are in turn used to either find an ATP proof or just further oardown the subset of lemmas to
precisely those that are necessary in the proof.

e Proof reconstruction, which uses the obtained informdftiom the successful ATP run, to reprove
the lemma in the logic of the proof assistant.

Robust hammers exist for proof assistants based on higter-togic (Sledgehammelr [27] for Is-
abelle/HOL [33], HOLyHammeri [20] for HOL Light [18] and HOL[B1]]) or dependently typed set
theory (MizAR [21] for Mizar [7,34] 6]). The general-purggutomation provided by the most ad-
vanced hammers is able to solve 40-50% of the top-level goakrious developments [10], as well as
more than 70% of the user-visible subgoals [11], and as saslvéen found very useful in various proof
developments [17].

Despite the gaining popularity of the more advanced vessidtype theory, implemented by systems
such as Agda [12], Coq [8], Leah [25], and Matita [4], there ab hammers for such systems. The
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construction of such a tool has so far been hindered by theolza usable encoding component, as well
as by comparatively weak proof reconstuction.

For the proof assistants whose logics are based on the GaloliConstructions and its extensions,
the existing encodings in first-order logic so far cover dimyted fragments of the source logid [1,/32, 9].
Why3 [1€] provides a translation from its own logic [15] (whiis a subset of the Coq logic, including
features like rank-1 polymorphism, algebraic data typesursive functions and inductive predicates)
to the format of various first-order provers (in fact Why3 lhaen initially used as a translation back-
end for HOLyHammer). Recently, an encoding of the depemgéyped higher-order logic of Finto
first-order logic has also been developed [2].

The built-in HOL automation is able to reconstruct the migjoof the automatically found proofs
using either internal proof search [19] or source-levebrestruction. The internal proof search mecha-
nisms provided in Coq, such as therstorder tactic [13], have been insufficient for this purpose so far.
Matita’s ordered paramodulatiohl [5] is able to reconstroany goals with up to two or three premises,
and the congruence-closure based internal automationiteas in Lean [24] are also promising.

The SMTCoq([3] project has developed an approach to usenet8AT and SMT solvers and verify
their proof witnesses. Small checkers are implementedyusifiection for parts of the SAT and SMT
proof reconstruction, such as one for CNF computation amdfencongruence closure. The procedure
is able to handle Coqg goals in the subset of the logic thaesponds to the logics of the input systems.

Contributions. We present our recently developed proof advice componentgge theory and systems
based on it. We first introduce an encoding of the Calculusmdti¢tive Constructions, including the
additional logical constructions introduced by the Codexys in untyped first-order logic with equality.
We implement the translation and evaluate it experimgntal the standard library of the Coq proof
assistant. We advocate that the encoding is sufficient fanantmer system for Coq: the success rates
are comparable to those demonstrated by early hammer sy/ftensabelle/HOL and Mizar, while the
dependencies used in the ATP proofs are most often suffitbgotove the original theorems. Strictly
speaking, our translation is neither sound nor completewdyder, our experiments suggest that the
encoding is “sound enough” to be usable. Moreover, we belibat a “core” version of the translation
is sound and we are currently working on a proof of this fact.

Secondly, we present a proof reconstruction mechanisndlzasa Ben-Yelles-type procedure com-
bined with a first-order generalization of the left rules gfdRhoff’s LJT, congruence closure and heuris-
tic rewriting. With this still preliminary proof search medure we are able to reprove almost 90% of the
problems solved by the ATPs, using the dependencies extr&atm the ATP output.

2 Translation

In this section we introduce an encoding of (a close appration of) the Calculus of Inductive Con-
structions into untyped first-order logic with equality. eflencoding should be a practical one, which
implies that its general theoretical soundness is not tha foaus, i.e., of course the translation needs to
be “sound enough” to be usable, but it is more important thmehcoding is efficient enough to provide
practically useful information about the necessary pregfahdencies. In particular, the encoding needs
to be shallow, meaning that Coq terms of type Prop are tresaskdirectly to corresponding first-order
formulas. Our translation is in fact unsound, e.g., it asssiproof irrelevance and ignores certain uni-
verse constraints. However, we believe that under the gstsumof proof irrelevance a “core” version
of the translation is sound, and we are currently working pnoaf.
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Below we present a variant of the translation for a fragméhe logic of Coq. The intention here
is to provide a general idea, but not to describe the encadimfgtail. In the first-order language we
assume a unary predica® a binary predicatd@ and a binary function symbol @. Usually, we write
instead of @t, s).

For the sake of efficiency, terms of type Prop are encodedttliras FOL formulas using a func-
tion .#. Terms that have type Type but not Prop are encoded usingaidor as guards which
essentially specify what it means for an object to have thergiype. For instanceyf : .o where
T=Tx:apBis translated to/f.¥4(r, f) — F(¢) where¥ (r, f) = Vx4 (a,X) - 4 (B, fX). So¥(r,f)
says that an objedt has typer =N x: .8 if for any objectx of type «, the applicationf x has types.
Function.# encoding propositions as FOL formulas is defined by:

e If I'-t:Prop thenZr (Mx:t.s) = Zr(t) = Frxt(S).

o If [t/ t: Prop thenZr(MNx:t.s) = YX% (t,X) — Zr xt(9).

e Otherwise, if none of the above apply (t) = P(%r (1)).

Function¥ encoding types as guards is defined by:

o If t=TX:t1.to andl - t1 : Prop theré (MX: t1.t2, S) = Zr (t1) — 9 xy, (2, 9).

o If t=TIX:t3.t andl" I/ t1 : Prop theré (Mx: t1.t2, S) = VX% (t1, X) — 9 xt, (t2, SX).

e Otherwise, whetis not a produc (t,s) = T(u, %r (t)).

Function® encoding terms as FOL terms is defined by:

%r(b) = b for b being a variable or a constant,

¢r(ts) is equal to:
— &r(t)if '+ s:A: Prop for some,
— 61 (t)%r (s) otherwise.
¢r(Nx:t.s) = Pyfor a fresh constar® wherey = FV(Mx: t.s) and
— if '+ (Mx:t.s) : Prop thenvy.Py <+ .Zr (Mx: t.s) is a new axiom,
— if T/ (Mx:t.s) : Prop thervyzPyz <« % (Mx: t.s 2) is a new axiom.

%r(AX: t's) = Fywheresdoes not start with a lambda-abstraction any mbris, a fresh constant,
¥y=FV(ax:{s) andvy. 7 (VX: TFyX = s) is a new axiom.

e %r(case(t,c,n,A8: @.AX: cpa.1,AX] : 71.S1,..., A% : Tk-Sk)) = FYiy3 for a fresh constarfe where
—l(C:iyik:=C1iy1:K1,...,Ck Yk kk) € E,

—2=¥2:02=FC(T;t),

—T1=y1:01=FC( ;¥ : p2.t(AXq : 71.51) ... (A : Th-S) )

-y =NZ:B.N%:7.oifori=1,....k

— the following is a new axiom:

Wi.Zr, (Waips . (34 :BLIXTit=CiAX AFYIYS = 51)
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Heret is the term matched on, the type tolias the forncd, the integem denotes the number
of parameters (which is the length gf, the typer[U/&t/x] is the return type, i.e., the type of
the whole case expressio& FV(p) = 0, ands[V/X] is the value of the case expression if the
value oft is ¢;pv. The free variable context RC;t) of t in I' is defined inductively: FQ@;t) = 0;
FC(I,x:7;t) = FC(I; ax: 7.t), x: tif x€ FV(t); and FQI,x: 7;t) = FC(T';t) if x¢ FV(t).

In the data exported from Coq there are three types of dé¢icasa definitions, typing declarations

and inductive declarations. We briefly describe how all ehthare translated.
A definitionc=t: 7 : xis translated as follows.

o If x =Prop then add” () as a new axiom with label

e If x £ Prop then

— add¥(r,c) as a new axiom,

— if 7= Prop then add «+> .#(t) as a new axiom with labe,

— if 7= Set orr = Type then add/ f.cf <> ¢(t, f) as a new axiom with labe,

— if ¢ {Prop Set Type} then add the equation= #'(t) as a new axiom with label.

A typing declaratiorc: 7 : « is translated as follows.

e If x =Prop then add” (r) as a new axiom with label

e If x # Prop then ad&/(z,c) as a new axiom with label

An inductive declaratioh(c: 7:«:=Cy:71:k1,...,Cn: Tn . kn) iS translated as follows.
e Translate the typing declaratian 7 : .

e Translate each typing declaration 7j : k fori=1,...,n.

e Add axioms stating injectivity of constructors, axiomstisigq non-equality of different construc-
tors, and the “inversion” axioms for elements of the indeectiype.

For inductive types also induction principles and recudsfiitions are translated.

The above only gives a general outline of the translatiorpréictice, we make a number of optimi-
sations, e.g., the arity optimisation by Meng and Pauls8} (& translating fully applied functions with
target type Prop directly to first-order predicates.

3 Reconstruction

We report on our work on proof reconstruction. We evaluage@bq internal reconstruction mechanisms
includingtauto andfirstorder [13] on the original proof dependencies and on the ATP foundis,
which are in certain cases more precise. In partictlastorder seems insufficient for finding proofs
for problems created using the advice obtained from the AIFB.rThis is partly caused by the fact that
it does not fully axiomatize equality, but even on problentsolv require only purely logical first-order
reasoning its running time is sometimes unacceptable.

The formulas that we attempt to reprove usually belong rfrants of intuitionistic logic low in the
Mints hierarchy[[29]. Most of proved theorems follow by camihg a few known lemmas. This raises a
possibility of devising an automated proof procedure o for these fragments of intuitionistic logic,
and for the usage of the advice obtained from the ATP runs.mieimented a preliminary version of a
Ben-Yelles-type procedure (essentiadlyuto-type proof search with a looping check) augmented with
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Prover Solved% Solved Sum% Sum  Unique
Vampire 32.9 6839 32.9 6839 855
Z3 27.6 5734 34.9 7265 390

E Prover 25.8 5376 35.3 7337 72
any 35.3 7337 35.3 7337

Table 1: Results of the experimental evaluation on the 2@80B problems generated from the propo-
sitions in the Coq standard library.

a first-order generalization of the left rules of Dyckhofégstem LJTI[[14], the use of thengruence
tactic, and heuristic rewriting using equational hypo#ses

It is important to note that while the external ATPs we empdog classical and the translation
assumes proof irrelevance, the proof reconstruction ptase not assume any additional axioms. We
reprove the theorems in the intuitionistic logic of Coqeefively using the output of the ATPs merely
as hints for our hand-crafted proof search procedure. Toreref the ATP proof is inherently classical
then proof reconstruction will fail. Currently, the onlyfammation from ATP runs we use is a list of
lemmas needed by the ATP to prove the theorem (these are taitieal context) and a list of constant
definitions used in the ATP proof (we try unfolding these ¢ants and no others).

Another thing to note is that we do not use the informationtaimied in the Coq standard library
during reconstruction. This would not make sense for outuad@mn of the reconstruction mechanism,
since we try to reprove the theorems from the Coq standardriib In particular, we do not use any
preexisting hint databases available in Coq, not even the database (we use theto andeauto
tactics with thenocore option). Also, we do not use any domain-specific decisiorc@dares available
as Coq tactics, e.gfield, ring Of omega.

4 Evaluation

We evaluated our translation on the problems generateddioteclarations of terms of type Prop in the
Cog standard library of Coq version 8.5. We used the follgvalassical ATPs: E Prover version 1.9[30],
Vampire version 4.0[22] and Z3 version 4/0 [26]. The metHogp was to measure the number of
theorems that the ATP could reprove from their extended mtdgrecies within a time limit of 30 s for
each problem. The extended dependencies of a theorem afeaabby taking all constants occuring in
the proof term of the theorem in Coq standard library, andingeely taking all constants occuring in
the types and non-proof definitions of any dependencies@xil so far. Because of the use of extended
dependencies, the average number of generated FOL axianas dmblem is 193. We limited the
recursive extraction of extended dependencies to depth 2.

The evaluation was performed on a 48-core server with 2.2 8B Opteron CPUs and 320 GB
RAM. Each problem was always assigned one CPU core. Tablevisshe results of our evaluation. The
column “Solved%" denotes the percentage (rounded to thedficsmal place) of the problems solved by
a given prover, and “Solved” the number of problems solvettbbthe total number of 20803 problems.
The column “Sum%” denotes the percentage, and “Sum” thé notaber, of problems solved by the
prover or any of the provers listed above it. The column “Weigdenotes the number of problems the
given prover solved but no other prover could solve.

We also evaluated various proof reconstruction mechan@ntbe problems originating from ATP
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Tactic Time  Solved%  Solved
yreconstr0 10s 26.8 1965
yreconstr 1s 83.1 6097
yreconstr 2s 85.8 6296
yreconstr 5s 87.5 6421
yreconstr 10s 88.1 6466
yreconstr 15s 88.2 6473
simple 1s 50.1 3674
firstorder’ 10s 69.6 5103
jprover 10s 56.1 4114
any 90.1 6609

Table 2: Results of the evaluation of proof reconstructinne 7337 problems solved by the ATPs.

proofs of lemmas in the Coq standard library. In our settthg,Ben-Yelles-type algorithm mentioned
in the previous section tends to perform significantly bidttan the available Coq’s tactics. The results
of the evaluation are presented in Tdble 2. Our tagtte ¢onstr) manages to reconstruct about 88% of
the reproved theorems. However, it needs to be remarkedf thhatuse the advice obtained from ATP
runs then about 50% of the the reproved theorems follow byn#bamation of hypothesis simplification,
the tacticsintuition, auto, easy, congruence and a few heuristics (tacticimple). Moreover, the
yreconstr tactic without any hintsyreconstr0), i.e., without using any of the information obtained
from ATP runs, achieves a success rate of about 26%. Thes&uaotion success rate of tifierstorder
tactic combined with various heuristics is about 70% if genaxioms for equality are added to the
context (tacticfirstorder’). The jp tactic (which integrates the intuitionistic first-ordert@mated
theorem prover JProver [28] into Coq) combined with varibesiristics and equality axioms (tactic
jprover) achieves a reconstruction success rate of about 56%. Gvinisuccess rate is explained by the
fact that in contrast to théirstorder tactic thejp tactic cannot be parameterised by a tactic used at
the leaves of the search tree when no logical rule applies.
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