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Classic distributed control problems have an interesting dichotomy: they are either trivial or un-
decidable. If we allow the controllers to fully synchronize, then synthesis is trivial. In this case,
controllers can effectively act as a single controller withcomplete information, resulting in a trivial
control problem. But when we eliminate communication and restrict the supervisors to locally avail-
able information, the problem becomes undecidable. In thispaper we argue in favor of a middle way.
Communication is, in most applications, expensive, and should hence be minimized. We therefore
study a solution that tries to communicate only scarcely and, while allowing communication in order
to make joint decision, favors local decisions over joint decisions that require communication.

1 Introduction

Synthesizing code directly from a formal specification is highly intractable. Although automated synthe-
sis is an attractive concept, neither is the practice of programming currently under threat of extinction,
nor is automatic synthesis close to become a major factor in code generation. Still, some small critical
tasks or protocols may be quite tricky for a programmer to produce and can greatly benefit from either
fully automatic synthesis or a computer assisted development methodology. Prominent representatives
of such tasks are concurrency control protocols that guarantee mutual exclusion, locking, or efficient
memory access. The most challenging programming problems are often concurrent in nature, and, alas,
synthesis of concurrent algorithms is undecidable [20].

This undecidability result on synthesizing concurrent code provides an important information about
how not to attack the synthesis problem: through a general catch-all algorithmic method. One common
practice to deal with an undecidable result is to restrict the generality of the problem. This can be done by
limiting the architecture of the system [20, 13, 14, 5, 24, 25]. Positive results, however, are restricted to
very limited architectures, such as pipelines, rings, or assumption about the hierarchy of memory access.

Another approach is to use a heuristic method, accepting that it may not succeed in all cases. A
genetic search among the space of syntactically limited programs, which mutates existing candidates
and progresses based on ranking provided by model checking,is described in [7]. Instead of using
a direct synthesis algorithm, this technique generates candidate solutions, evaluates their quality (the
model checking is generalized to a fitness function that estimates the distance from a solution), and
adjusts them to fitter solutions. This method is successful in automatically finding solutions to mutual
exclusion [7] and leader election problems [8] and was even used to detect and correct an error in a
complicated communication protocol [9]. In principle, such heuristic search techniques can be fully
automatic, though they require human interaction, throughsetting the parameters or adjusting them after
an unsuccessful run, to be efficient.

We concentrate on synthesizing distributed control [22, 23, 29]. Synthesis is achieved in an incre-
mental way: an already existing distributed system is modified to satisfy an additional property. In our
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case, an invariant. Controlling the system is done by selectively blocking transitions. Ideally, local de-
cisions can be taken by the processes themselves, or equivalently, by supervisors (one per process) that
control the processes and synchronize with them. It turns out that the controllability problem (whether
such distributed control exists) is also undecidable [27, 28], even for simple safety properties such as
execution according to priorities [6].

To challenge this undecidability result, we relax the problem and allow additional temporary inter-
actions between processes in order to allow them to acquire sufficient information to decide together on
allowing (the converse of blocking) a transition. Formally, this coordination is mapped to a supervisor. A
variant of this method is to partition the processes into groups of communicating processes, or, likewise,
to introduce regional supervisors and assign each process to one of them. These (regional) supervisors
collect enough process information to make control decisions. Under this assumption, all processes may,
at the limit, interact to decide globally on the execution ofeach transition. This reduces the problem, in
the limit, to a sequential control problem, which is trivialfor finite state systems. The efficiency of this
method depends on the amount of additional synchronizationneeded to enforce the desired invariant.

The method we use to enforce control is based onknowledge[4, 16]. Intuitively, in a distributed
system, the knowledge of a process includes all properties that globally hold in all states consistent
with the local view of the process. It reflects limited visibility of processes about the situation in other
processes. The definition of knowledge is quite subtle, as itinvolves some assumptions about the view
of a process. Indeed, in order to make a distributed control decision, a process (or a supervisor process
synchronized with it) must make a choice that is good for all possible global states that are consistent
with its local view. As process knowledge may not be sufficient, interaction between processes may
be used to acquire the joint knowledge of several processes.Furthermore, knowledge can be refined
based on the history of an execution. In this way, the number of possible global states that are consistent
with the local view may be reduced, based on different histories. On the other hand, using this kind of
knowledge requires the support of an expensive program transformation. We will discuss at length the
use of knowledge in constructing control for distributed systems.

The knowledge based control synthesis [16, 1, 2, 6] restricts the executions of the system. The
information gathered during the model checking stage is used as a basis for a program transformation that
controls the execution of the system by adding constraints on the enabledness of transitions. This does
not produce new program executions or deadlocks and, consequently, preserves all stuttering closed [18]
linear temporal logic properties of the system [15] when no fairness is assumed.

2 Preliminaries

We chose Petri Nets as our model because of the intuitive and concise representation offered by them. But
the method and algorithms developed extend to other models,such as transition systems, communicating
automata, etc.

Definition 1. A (1-safe) Petri NetN is a tuple(P,T,E,s0) where

• P is a finite set ofplaces,

• thestatesare defined as S= 2P where s0 ∈ S is theinitial state,

• T is a finite set oftransitions, and

• E ⊆ (P×T)∪ (T ×P) is a bipartite relation between the places and the transitions.

For a transition t∈ T, we define the set ofinput places•t as{p∈ P | (p, t) ∈ E}, andoutput placest• as
{p∈ P | (t, p) ∈ E}.
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Figure 1: A Petri Net

Definition 2. A transition t isenabledin a state s, denoted s[t〉, if •t ⊆ s and t•∩ s⊆• t. A state s is in
deadlockif there is no enabled transition from it.

Definition 3. A transition t can befired (or executed) from state s to state s′, denoted by s[t〉s′, when t is
enabled at s. Then, s′ = (s\• t)∪ t•.

Definition 4. Two transitions t1 and t2 aredependentif (•t1∪ t1•)∩ (•t2∪ t2•) 6= /0. Let D⊆ T ×T be the
dependencerelation. Two transitions areindependentif they are not dependent.

Transitions are visualized as lines, places as circles, andthe relationE is represented using arrows.
In Figure 1, there are placesp1, p2, . . . , p7 and transitionsa, b, c, d. We depict a state by putting full
circles, calledtokens, inside the places of that state. In the example in Figure 1, the initial states0 is
{p1, p2, p7}. The transitions that are enabled from the initial state area andb. If we fire transitiona
from the initial state, the tokens fromp1 and p7 will be removed, and a token will be placed inp3. In
this Petri Net, all transitions are dependent on each other,since they all involve the placep7. Removing
p7, as in Figure 2, makes botha andc become independent from bothb andd.

Definition 5. Anexecutionof a Petri Net N is a maximal (i.e., it cannot be extended) alternating sequence
of states and transitions s0t1s1t2s2 . . ., where s0 is the initial state, such that, for each states si in the
sequence, si [ti+1〉si+1. We denote these executions by exec(N).

For convenience, we sometimes use as executions just the sequence of states, or just the sequence of
transitions, as will be clear from the context. A state isreachablein a Petri Net if it appears on at least
one of its executions. We denote the reachable states of a Petri Net N by reach(N).

We use places also as state predicates. As usual, we writes |= pi iff pi ∈ s and extend this in the
standard way to Boolean combinations on state predicates. For a states, we denote byϕs the formula that
is a conjunction of the places insand the negated places not ins. Thus,ϕs is satisfied exactly by the state
s. For the Petri Net in Figure 1, the initial states0 satisfiesϕs0 = p1∧ p2∧¬p3∧¬p4∧¬p5∧¬p6∧ p7.
For a set of statesQ ⊆ S, let ϕQ =

∨
s∈Q ϕs, or any logically equivalent propositional formula, be a

characterizing formulaof Q. As usual in logic, whenϕQ andϕQ′ characterize sets of statesQ andQ′,
respectively, thenQ⊆ Q′ exactly whenϕQ → ϕQ′ .

An invariant [3] ofN is a subset of the statesQ⊆ 2S; a netN satisfies the invariantQ if reach(N)⊆Q.
A generalized invariantof N is a set of pairsI ⊆ S× T; a netN satisfiesI if, whenevers[t〉 for a
reachables, then(s, t) ∈ I . This covers the above simple case of an invariant by pairingup every state
that appears inQ with all transitionsT.

Definition 6. An execution of a Petri Net Nrestrictedwith respect to a set I⊆ S×T, denoted execI(N),
is a maximal set of executions s0t1s1t2s2 . . . ∈ exec(N) such that, s0 is the initial state, for each states
si in the sequence, si [ti+1〉si+1, and furthermore(si , ti+1) ∈ I. The set of states reachable in execI (N) is
denoted reachI (N).
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Figure 2: A Petri Nets with prioritiesa≪ d andb≪ c

Definition 7. For a set of executions X, let pref(X) be the set of prefixes (including full executions) of X.

Denote the last state of a finite prefixh of an execution bylast(h).

Lemma 1. reachI(N)⊆ reach(N) and execI(N)⊆ pref(exec(N)).

As an example of a property we may want to enforce, consider prioritized executions.

Definition 8. A Petri Net with prioritiesis a pair (N,≪) with N a Petri Net and≪ a partial order
relation among the transitions T of N.

Let I≪ = {(s, t) | s[t〉 and∀t ′ ∈ T s[t ′〉 → t ′ ≪ t}. The set ofprioritized executions execI≪(N) of
(N,≪) is the set of executions restricted toI≪. The executions of the Petri NetM in Figure 2 (when the
prioritiesa≪ d andb≪ c arenot taken into account) includeabcd,acbd,bacd,badc, etc. However, the
prioritized executions of(M,≪) are the same as the executions of the NetN in Figure 1.

Definition 9. A processπ of a Petri Net N is a subset of the transitions T .

We will represent the separation of transitions of a Petri Net into processes using dotted lines. We
assume a given set of processesC thatcoversall transitions of the net, i.e.,

⋃
π∈C π = T. A transition can

belong to several processes, e.g., when it models a synchronization between processes. Letproc(t) = {π |
t ∈ π} be the set of processes to whicht belongs. For the Petri Net in Figure 1, there are two executions:
acbdandbdac. There are two processes: theleft processπl = {a,c} and theright processπr = {b,d}.

The neighborhoodof a set of processesΠ includes all places that are either inputs or outputs to
transitions ofΠ.

Definition 10. Theneighborhoodngb(π) of a processπ is the set of places
⋃

t∈π(
•t ∪ t•). For a set of

processesΠ ⊆ C , ngb(Π) =
⋃

π∈Π ngb(π).

A set of processesΠ ownsthe places in their neighborhood that can gain or lose a tokenby a transition
t only if t is exclusivelyin Π.

Definition 11. The set of placesownedby a set of processes (including a singleton process)Π, denoted
own(Π), is ngb(Π)\ngb(C \Π).

When a notation refers to a set of processesΠ, we will often replace writing the singleton process
set {π} by writing π, e.g., we writeown(π). Note thatngb(Π1)∪ ngb(Π2) = ngb(Π1 ∪ Π2), while
own(Π1)∪ own(Π2) ⊆ own(Π1∪Π2). The neighborhood of processπl in the Petri Net of Figure 1 is
{p1, p3, p5, p7}. Placep7 is neither owned byπl , nor byπr , but it is owned by{πl ,πr}. It belongs to the
neighborhood of both processes and acts as a semaphore. It can be captured by the execution ofa or of
b, guaranteeing that¬(p3∧ p4) is an invariant of the system.

Our goal is to control the system to satisfy a generalized invariant by restricting some of its transitions
from some of the states. The setting of the control problem may impose that only part of the transitions,
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ct(T)⊆ T, calledcontrollabletransitions, can be selectively supported by the processors that contain it.
(It blocks if no processor supports it.) The other transitions,uc(T) = T \ct(T), areuncontrollable. Note
that we may be at some state where either some uncontrollabletransitions, or all enabled transitions,
violate the generalized invariant. Being in such states is therefore “too late”; part of the controlling task
is to avoid reaching such states.

In control theory, the transformation that takes a system and allows blocking some transitions adds
a supervisor process [21], which is usually an automaton that runssynchronouslywith the controlled
system. This (finite state) automaton observes the controlled system, progresses according to the transi-
tions it observes, and blocks some of the enabled transitions, depending on its current state. In a similar
way, in distributed control [29, 23, 22], for each process weassign such a supervisor, which changes
its states each time the process it supervises makes a transition, or when a visible transition of another
process (e.g., through the change of shared variables) is executed. Based on its states, the supervisor
allows (supports) transitions of the controlled process. In a disjunctive control architecture [29], if no
supervisor suports an, otherwise enabled, transition, it cannot execute and is thus blocked. Such a super-
visor can be amalgamated, through a transformation, into the code of the controlled process. In order to
capture this for Petri Nets, without a complicated transition splitting transformation, we use an extended
model, as defined below. In particular, it allows adding enabling conditions and variable transformation
to capture the encoding of the local supervision of the processes. It would also allow encoding additional
asynchronous supervision in our solution.

Definition 12. An extended Petri Net[12] is a Petri Net with a finite set of variables Vπ over a finite
domain per each processπ ∈ Π. In addition, a transition t can be augmented with a predicate ent on
the variables Vt = ∪π∈proc(t)Vπ and a transformation function ft(Vt). In order for t to fire, ent must
hold in addition to the basic Petri Net enabling condition onthe input and output places of t. When
t fires, in addition to the usual changes to the tokens, the variables Vt are updated according to the
transformation ft .

We transform a Petri NetN and a generalized invariantI into an extended Petri NetN′ that allows
only the executions ofN controlled to satisfyI .

Definition 13. A controlling transformation obeys the following conditions:

• New transitions and places can be added.

• The input and output places of the new transitions are disjoint from the existing places.

• Variables, conditions and transformations can be added to existing transitions.

• Existing transitions will remain with the same input and output places.

• It is not possible to fire from some point an infinite sequence consisting of only added transitions.

Added transitions are grouped into new (supervisory) processes. Added variables will represent some
knowledge-dependent finite memory for controlling the system, and some interprocess communication
media between the original processes and the added ones. Processes from the original net will have dis-
joint sets of variables from one another. The independence between the original transitions is preserved
by the transformation, although some coordination may be enforced indirectly through the interaction
with the new supervisory processes.

Definition 14. Let s⌈C map a state s of the transformed version N′ into the places of the original version
N by projecting out additional variables and places that N′ may have on top of the places of N. This
definition is also extended to executions (as sequences of states).
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This projection allows us to relate the sets of states of the original and transformed version. Firing
of a transitions added by the controlling transformation does not changes⌈C and is not considered to
violate I (the requirement that(si , ti+1) in Definition 6 is imposed only whenti+1 is from the original net
N). Note that our restrictions on the transformation impliesthat the setsngb(Π) andown(Π) for Π ⊆ C
are not affected by the transformation. Furthermore, albeit the rich structure of extended Petri Nets, our
control transformation will allow a finite state control fora finite state system.

Definition 15. Two executionsσ and σ′, viewed as sequences of states, are equivalent up to stutter-
ing [18] when, by replacing any finite adjacent repetition ofthe same state by a single occurrence in
bothσ or σ′, we obtain the same sequence. Let stutcl(Γ) be the stuttering closure of a setΓ of sequences,
i.e., all sequences that are stuttering equivalent to some sequences inΓ.

Lemma 2. A controlling transformation produces an extended Petri Net N′ from N such that
exec(N′)⌈C⊆ pref(stutcl(exec(N))).

The controlling transformation may introduce new deadlocks, hence the lemma above asserts about
the prefixes of the original executions. Of course, this is not a desirable outcome of the control transfor-
mation, and the solutions that will be given to the distributed control problem will circumvent it.

3 Process Knowledge and Joint Process Knowledge

The knowledge of a process at a given execution point consists of facts that hold in all global states
that are consistent with the current local view of this process. The current local view represents the
limited ability of a process to observe the global state of the system. A process may be aware of its own
local variables and shared variables in its neighborhood. Similarly, we can define the joint knowledge of
several processes, by considering their joint local view.

According to the limited observability of the processesΠ, we can define an equivalence relation
≡Π⊆ S×S (when the set of processesΠ is a singleton, we can write≡π) among the statesS of the
system; if the current state iss∈ S, then the processesΠ cannot distinguish, given their joint local view,
betweensand any state equivalent to it according to≡Π. Such an equivalence relation is the basis of the
definition of knowledge [4].

Definition 16. The processesΠ (jointly) know a propertyψ in a state s, denoted s|= KΠψ, if, for all s′

such that s≡Π s′, we have that s′ |= ψ.

In the Petri Nets model, the equivalence relation≡Π can be defined by restricting first each state
to a part of a state. Then, states that share the same part are considered equivalent. There are several
possibilities to restrict the part of a state that is associated with a subset of the processesΠ. We will give
two possibilities for such a restriction. The first one is that of local information, which takes the part
of the state that includes the neighborhood of the processesΠ. This Petri Nets definition corresponds,
in general systems, to the variables that can be read or written by the processesΠ. The second such
restriction is that oflocal state(different names were chosen only to make a distinction), based on
restricting states to the places that the processesΠ own. This corresponds, in general systems, to the
variables that only the processesΠ, and no other processes, can change (write).

Definition 17. The local informationof a set of processesΠ of a Petri Net N in a state s is s⌈Π=
s∩nbg(Π).

In the Petri Net in Figure 1, the local information ofπl in any statesconsists of the restriction ofs to
the places{p1, p3, p5, p7}. In the depicted initial state, the local information is{p1, p7}.
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Definition 18. Thelocal stateof a set of processesΠ of a Petri Net N in a state s is s⌊Π= s∩own(Π).

It is always the case thats⌊Π⊆ s⌈Π. The local state ofπl in the initial state of Figure 1 is{p1}.

Lemma 3. If π 6∈ Π then s⌊Π∪{π} is the (disjoint) union of s⌊Π and s⌈π∩own(Π∪{π}).
In the following definitions, we can often use either the local information or the local state. When

this is the case, we will uses|Π instead of eithers⌈Π or s⌊Π.

Definition 19. Let Π ⊆ C be a set of processes. Define an equivalence relation≡Π⊆ reach(N)×
reach(N) such that s≡Π s′ when s|Π = s′|Π.

As s|Π can stand for eithers⌈Π or s⌊Π, this gives two different equivalence relations. When it is
important to distinguish between them, we denote the one based on “⌈” as≡w

Π (weak equivalence) and
the one based on “⌊” as≡s

Π (strong equivalence).

Lemma 4. If t ∈ π and s≡w
π s′ then s[t〉 if, and only if, s′[t〉.

That is, the enabledness of a transition depends only on the local information of a process that
contains it. This does not hold when we replace≡w

π by ≡s
π. In the Prioritized Petri Net in Figure 1,

e.g., we have that{p1, p2, p7} ≡
w
πl
{p1, p4, p7}, sinceπl has the same local information{p1, p7} in both

states. The state{p1, p4} is not equivalent to either of these states. On the other hand, these three states
are equivalent according to≡s

πl
(p7 is not inown(πl )).

Corresponding with the two equivalence relations of Definition 19, we distinguish between knowl-
edge based on strong equivalence≡s

Π (and hence on local states), denotedKs
Πϕ and knowledge based

on weak equivalence≡w
Π (and hence local information), denotedKw

Πϕ. The knowledge based on the
local state (resp. local information) is calledstrong (resp.weak) knowledge. Since the local information
determines the local state (while multiple local states mayhave the same local information), we have
Ks

Πϕ → Kw
Πϕ. Consequently, we mayknowmore under weak knowledge.

The motivation for the different definitions of equivalenceand, subsequently, the different defini-
tions of knowledge is as follows. In order to make choices (tosupport or block a transition) that take into
account knowledge based on local information, a process, ora set of processes, needs to have some guar-
antee that the local information will not be changed by otherprocesses while it is collecting information
from the processes or making the decision. For a single process, this may be achieved by the underlying
hardware. But it is unreasonable to require such a guaranteefor a set of processes that either temporary
interact (interactions take time and other processes may meanwhile progress) or send their current local
view to some supervisor process that collects views from several processes. Thus, for decisions involving
a set of processes, strong knowledge, based on the joint local state, is used instead.

The classical definition of knowledge is based on relations≡Π over the reachable statesreachI(N).
However, when using knowledge to control a system to satisfya generalized invariant, one may calculate
the equivalences and the knowledge based on the statesreachI(N) that appear in the executions of the
original system that satisfy this generalized invariantI . This (cyclic looking) claim is proved [2] by
induction on the progress of the execution in the controlledsystem: for a state already on such an
execution (by the inductive assumption) the controlled system allows firing only transitions that preserve
the generalized invariant, hence is also inreachI (N). We may need to restrict the generalized invariantI ,
in order not to introduce new deadlocks. This means even fewer reachable states, which can consequently
increase the knowledge further.

One of the main challenges of using knowledge for controlling systems is that it is not always possible
to decide, based on the local (or joint) knowledge, whether or not allowing a transition will guarantee
the desired generalized invariant. One tool that can be usedin this case is to allow additional interactions
between processes, or knowledge accumulation by additional asynchronous supervisors. This will be
explained later. However, before progressing to such an expensive solution, we may also try to improve
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the knowledge by refining the equivalence relation that is used in its definition.
The definitions of knowledge that we used assumes that the processes do not maintain a log with their

history. The use of knowledge with such a log, calledknowledge with perfect recall[16], is discussed
in [1]. Consider an equivalence≈π between histories that seem undistinguishable to the processπ. Two
finite prefixesh, h′ of Petri Net executions will be considered equivalent for≈π if the projection ofh
on transitions visible toπ are the same in bothh andh′. Specifically for Petri Nets, we can define the
transitionsvis(π) = {t|(•t ∪ t•)∩ngb(π) 6= /0} (t is dependent on some transitions inπ). In this case, the
last stateslast(h) and last(h′) of h andh′, respectively, are equivalent under≡w (and hence also under
≡s). This can be shown by induction over the length of the prefixes, based on the fact that only the
transitions invis(π) affectngb(π)⊇ own(π).
Definition 20. Let h|= ψ exactly when last(h) |= ψ. Then we definepast knowledge, where h|= Kp

π ψ if,
for all h′ ≈π h, h |= ψ.

In particular for propertiesψ that depend only on the last state ofh, the use of the history refines
the weak equivalence between states:h ≈π h′ implies last(h) ≡w

Π last(h′). To take advantage of the
refined definition of knowledge, we need somehow to distinguish local states that have non equivalent
histories. On the face of it, this seems to require unboundedmemory. However, looking deeper into the
new definition of knowledge, one can observe that the following finite construction will work [16, 1].

Definition 21. Let△π be the set of finite sequences of transitions that do not change the neighborhood
of π (i.e., independent with the transitions inπ).

Definition 22. LetA = (S,s0,T) be a finite automaton representing the global states S of a Petri Net N,
including the initial state s0 ∈S and the transitions T between them. For each processπ, we construct an
automatonAπ representing the set of states ofA where the Petri Net N can be after a given local history.
The automatonAπ has the following components:

• The set of states is2S.

• The initial state is the set of states{s|∃µ∈△π s.t.s0[µ〉s}. That is, the initial state of this automaton
contains all states obtained from s0 by executing a finite number of transitions independent of (i.e.,
invisible to)π.

• The transition relation isΓ t
−→Γ′ between two statesΓ, Γ′ ∈ 2S and a transition t∈T is as follows:

Γ′ = {s′|∃s∈ Γ∃µ∈△π s.t.,s[tµ〉s′}. That is, a move fromΓ to Γ′ corresponds to the execution of
a transition t that changes the neighborhood ofπ followed by transitions independent ofπ.

Then, one may useKp
π ψ instead ofKw

π for locally supporting transitions. (Note thatKw
π → Kp

π .)
However, the size of each such automaton (one per processπ) can be exponential in the size of the global
state space. Knowledge of perfect recall can be implementedby adding a synchronized supervisor with
memory (basically implementing the automatonAπ). It is natural to ask whether one can make an even
finer distinction between states than with knowledge of perfect recall. This is indeed possible, but at the
cost of a more involved program transformation. We may augment in our transformation the context of
the interprocess communication between processes with additional transformation, that would implement
the support for additional knowledge. Such a transformation can, e.g., be based on Gossip Automata [17],
providing the most recent past local view of any other process.

We henceforth use knowledge formulas combined with Booleanoperators and propositions. For a
detailed syntactic and semantic description of logics withknowledge one can refer, e.g., to [4]. Onces|=
KΠψ is defined,ψ can also be a knowledge property, hences|=KΠ′KΠψ (knowledge about knowledge) is
also defined, though the finite-state representation described above only applies to past knowledge used
in outermost knowledge operators.
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Lemma 5. If s |= KΠϕ and s≡Π s′, then s′ |= KΠϕ.

Lemma 6. Knowledge is monotonic with respect to the set of observing processes: ifΠ′ ⊆ Π then
KΠ′ϕ → KΠϕ.

Lemma 7. Given that s|=KΠϕ in some basic Petri Net N, then s|=KΠϕ also in a transformed version N′.

Enforcing prioritized executions in a completely distributed way may be impossible. In Figure 2,a
andc belong to the left processπl , andb andd belong to the right processπr , with no interaction between
the processes. The left processπl , upon having a token inp1, cannot locally decide whether to execute
a; the priorities dictate thata can be executed ifd is not enabled, sincea has a lower priority thand. But
cannot distinguish between the cases whereπr has a token inp2, p4, or p6.

In the Prioritized Petri Net in Figure 2, e.g., we have that{p1, p2} ≡
w
πl
{p1, p4}, since in both states

πl has the same local information{p1}. In the state{p1, p2}, a is a maximal priority enabled transition
(incomparable withb), while in {p1, p4}, a is not maximal anymore, as we have thata ≪ d, and both
a and d are now enabled. In the initial state the local information (and also the local state) ofπl is
{p1}. Thus,πl does not have enough knowledge to support any transition since{p1, p2} ≡

w
πl
{p2, p3}).

Similarly, the local information ofπr is {p2}, which also is not sufficient to support any transition. After
they both hang on a supervisor, it has enough information to supporta or b.

4 A Globally Controlled System

Before providing a solution to the distributed control problem we need to provide a solution to the related
global control problem. Some reachable states are not allowed according to the generalized invariant.
In order not to reach these states, resulting in an immediately deadlock, we may need to avoid some
transitions that lead to such states from previous states. This is done using game theoretical search.

The game is played between aconstructor, who wants to preserve the generalized invariantI indef-
initely (or reach a state that is already a deadlock in the original systemN), and aspoiler, who has the
opposite goal. The game is played on the statesS of a net. It starts from the initial states0 and ends
if a deadlock state is reached (and may go on forever). In eachround, the constructor player chooses a
nonempty subset of enabled transitions that must include all enabled uncontrollable transitions. Subse-
quently, the spoiler chooses a transition from this set, which is then executed. The spoiler wins as soon
as she can choose a transition that violatesI , i.e., (s, t) /∈ I , while the constructor wins if this condition
never holds (on an infinite run or a finite run that ends in a deadlock).

We can define an “attractor”attr(A) that contains all states inA and all states that the spoiler can
force toA in a single transition. A states is in attr(A) if one of the following conditions holds:

• s∈ A,

• there exists an uncontrollable transitiont ∈ uc(T) enabled ins with s[t〉s′ and eithers′ ∈ A, or
(s, t) 6∈ I , or

• s is not a deadlock state in the Petri NetN and, for all transitionst enabled ins, such thats[t〉s′ and
(s, t) ∈ I , it holds thats′ ∈ A.

As usual, we defineattrn+1(A) = attr(attrn(A)), whereattr0(A) = A. Because of the monotonicity
of theattr(A) operator (with respect to set inclusion) and the finiteness of the state space, there is a least
fixpoint attr∗(A), which isattrn(A) = attrn+1(A) for some (smallest)n.

Now, let IG = {(s, t) ∈ I | s[t〉s′ ands′ /∈ attr∗( /0)}. Let G = reachIG(N) if s0 /∈ attr∗( /0), otherwise
G= /0. These are the “good” reachable states in the sense that theyare allowed byI and the system can
be controlled to henceforth adhere toI .
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Definition 23. Let R= {(s, t) ∈ I | ∃s′ s[t〉s′∧s,s′ ∈ G} be thesafe transition relation.

If the initial state is good (s0 ∈ G), then the constructor can win by playing according toR. If, on
the other hand,s0 is in the attractorattr∗( /0) of the bad states, thens0 is in attrn( /0) for somen≤ |S|. By
the definition ofattrn( /0), the spoiler can force the game toattrn−1( /0) in the next step, then toattrn−2( /0),
and so forth, and thus make sure the bad states are reached within at mostn steps.

Lemma 8. The constructor can force a win if, and only if, s0 ∈ G.

This game can obviously be evaluated quickly on theexplicit game graph, and hence in time expo-
nentially in the number of places. EXPTIME completeness canbe demonstrated by a simple reduction
from thePEEK-G5 [26] game [10]. Deciding if the constructor can force a win isPSPACE complete for
Petri Nets with only controllable transitions [10].

Model Checking

We will use the following propositional formulas, with propositions that are the places of the Petri Net:

- The good statesG: ϕG.

- The states where a transitiont is enabled:ϕen(t).

- At least one transition is enabled, i.e., there is no deadlock: ϕdf =
∨

t∈T ϕen(t).

- Transitiont is allowed from the current state by the safe transition relation R: ϕgood(t)

- The local information (resp. local state) of processesΠ at states: ϕs⌈Π (resp.ϕs⌊Π).

The corresponding sets of states can easily be computed by model checking and stored in a compact
way, e.g., using BDDs. Given a Petri Net, one can perform model checking in order to calculate whether
s |= Kπψ. The processesΠ know ψ at statesexactly when(ϕG∧ϕs|Π)→ ψ is a propositional tautology.
We can also check properties that include nested knowledge by simply checking first the innermost
knowledge properties and marking the states with additional propositions for these innermost properties.

Model checking knowledge using BDDs isnot the most space efficient way of checking knowledge
properties, sinceϕG can be exponentially big in the size of the Petri Net. In a (polynomial) space
efficient check (which has a highertimecomplexity), we enumerate all statess′ such thats≡π s′, check
reachability ofs′ using binary search, and, if reachable, check whethers′ |= ψ. This can also be applied
to nested knowledge formulas, where inner knowledge properties are recursively reevaluated each time
they are needed. The PSPACE complexity is subsumed by the EXPTIME complexity in the general case
algorithm for the safe transition relationR.

5 Control Using Knowledge Accumulation

According to the knowledge based approach to distributed control [1, 6, 2, 22], model checking of know-
ledge properties is used at a preliminary stage to determinewhen, depending the local information, an
enabled transition can safely be fired. In our case, this means checkings |= Kw

π ϕgood(t) (by Lemma 5, the
satisfaction only depends ons⌈π). At runtime, a processsupportsa transition in every local information
where this holds. The followingsupport policyuses this information at runtime:

A transitiont can be fired (is enabled) in a state when, in addition to its original enabledness
condition, at least one of the processes inproc(t) supports it.

Enabled uncontrolled transitions can always be supported,as a consequence of the following Lemma.
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Lemma 9. If t ∈ π∩uc(T) and(s, t) ∈ R, then s|= Kw
π ϕgood(t).

This follows from the observation that the safe transition relation does not restrict the uncontrolled
transition.

It is possible that, in some (non deadlock) states ofG, no process has enough local knowledge to
support an enabled transition and, furthermore, no uncontrollable transitions are enabled. We may need
to synchronize several processes or collect the joint knowledge of several processes through the use of
asynchronous supervisors. A process can decide, based on its current (lack of) knowledge, whether
it hangson such supervisor by sending it its local state. A supervisor T can make a decision, based
on accumulated joined knowledge of several hung processes,that one of them can support an enabled
transition. A process hangs on a supervisor, when the following propertydoes nothold:

κπ =
∨

t∈π
Kp

π ϕgood(t)∨Kp
π

∨

π′ 6=π

∨

t∈π′

Kw
π′ϕgood(t)

That is, a process does neither hang on the supervisor when ithas enough knowledge to support a tran-
sition, nor if it knows that some other process has such knowledge. In the latter case, it does not actually
need to be able to determine which process has that knowledge.

To avoid the overhead of computing past knowledge, it is often cheaper (and more appropriate) to
use weak knowledge instead. In case nested knowledge calculation is too expensive as well, we may
use the simplified knowledge formula

∨
t∈π Kw

π ϕgood(t) instead, at the expense of making more processes
hang.

The supervisorT keeps the updated joint local state of the hung processesΠ. When a processπ
hangs, it updates this view by transmitting toT its local informations⌈π, from whichT keeps (according
to Lemma 3)s⌈π∩own(Π∪{π}). Since all processes inΠ′ =Π∪{π} are now hung, no other process can
change these places. Then the joint knowledgeKs

Π′ϕgood(t) can be used to support a transitiont. Recall
that knowledge based decisions of a single process use weak knowledge (based on the local information),
while multiple processes use strong knowledge (i.e., basedon the joint local state).

In the following cases,

1. after the decision of a processπ to hang onT , other processes make changes toπ’s local informa-
tion that allow it to support some transitiont,

2. when a transitiont with {π, π′} ⊆ proc(t) is supported byπ′ while π is hung, or

3. when an uncontrollable transition executed (which is enabled even if it belongs to a hung process),

we allow π to notify T that it has decided not to hang on it anymore. Moreover,T , which acquired
information about the hung processesΠ, will have to forget the information about the placesown(Π) \
own(Π\{π}). The ability of processes to hang on a supervisor but also to progress independently before
the supervisor has made any supporting choice requires someprotocol between the processes and the
supervisor.

Instead of having a single supervisorT , we can use several supervisorsT1,T2, . . . ,Tk, where each
supervisorT i takes care of a set of processesproc(T i). These sets are pairwise disjoint and do not
necessarily cover all processes.

An effectively checkable criterion to determinte if at least one process or supervisor will be able to
provide a progress from any nondeadlock state inG is as follows:

(ϕG∧ϕdf)→
(

∨

t∈π∈C
Kw

π ϕgood(t)∨
∨

i∈1...k

∨

t∈π∈proc(T i)

Ks
proc(T i)

ϕgood(t)
)
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Lemma 10. Under our transformation from a Petri Net N to an extended Petri Net N′, exec(N′)⌈C⊆
stutcl(execI (N)) holds.

This is proved by induction on prefixes of the execution and using Lemma 2.
Lemma 11. N′ satisfies all stuttering invariant temporal properties of N.

Implementing the Supervisors

Processes hang on a supervisor in some arbitrary order. The supervisor needs to decide, based on the part
of the global state that it sees, whether or not there is enough information to support some transition.
Definition 24. Let L= {s⌊Π×Π | s∈ G,Π ⊆ C } denote the set ofjoint local states, each paired up with
the set of relevant processes (then G× C ⊆ L). We define⊑⊆ L×L (and, symmetrically,⊒) as follows:
q⊑ q′ if q = (s⌊Π1,Π1),q′ = (s⌊Π2,Π2) (i.e., both are part of the same global state s) andΠ1 ⊆ Π2. We
say that q′ subsumesq.

Definition 25. The support function supp: L → 2T returns, for each q∈ L, the transitions that are
allowed by R from all states that subsume q. Formally, supp(q) = ∩(s,C )⊒q{t | t ∈ T,(s, t) ∈ R}.

That is, forq= (s⌊Π,Π), t ∈ supp(q) iff s |= Ks
Πϕgood(t). If t ∈ supp(q)∩ ct(T), then the supervisor

can select a process inproc(t) to supportt. Obviously, whenq⊑ q′, supp(q)⊆ supp(q′). There is no need
for a supervisor to store in the domain ofsuppelementsq= (s⌊Π,Π) where|Π|< 2: whensupp(q) 6= /0,
the process with this local state can locally support a transition without the help of a supervisor.
Definition 26. Let ❀⊆ L× L be such that q❀ q′ if q = (s⌊Π,Π) and q′ = (s⌊Π∪{π},Π∪{π}), where
π 6∈ Π (i.e., q′ extends q according to exactly one process).

The supervisor updates its view about the joint local state of the processes according to the relation
❀: when moving fromq to q′ by acquiring the relevant information about a new processorπ; conse-
quently, its knowledge grows and it can decide to support oneof the transitions insupp(q′).

Definition 27. A joint local state q isminimal supportingif supp(q) 6= /0 and, for each q′ such that q′ ❀ q,
supp(q′) = /0.

Definition 28. Theupward closure↑U of a subset of the joint local states U⊆ L is {q∈ L | ∃q′ ∈U q′ ⊑
q}.

Lemma 12. A sufficient condition for restricting the domain U⊆ L of supp for a supervisor, without
introducing new deadlocks, is that G×{C } ⊆↑U.

Thus, there is no need to calculate and storeall the cases of the functionsupp. This suggests the
following algorithm for calculating the representation table for supp: perform DFS such that ifq❀ q′,
thenq is searched beforeq′; backtrack when visitingq again, or whensupp(q) 6= /0. This algorithm can
be used also for multiple supervisors, when restricting thesearch to the joint local states ofΠ ⊆ proc(T i)
for eachT i .

In order to reduce the set of local states that a supervisor needs to keep in the support table, one
may decide that a supervisor will not always support transitions as soon as the joint local state of the
hung processes allows that. This introduces further delaysin decisions, where the supervisor waits for
more processes to hang even when it can already support some transitions. On the other hand, the set of
supported transitions may be larger in this case, allowing more nondeterminism.

The size of the global state space of a Petri Net is inO (2|P|). Since we need to keep also the joint
local states, the size of the support table that we store in a supervisor, is inO (2|P|+|C |) (which is the size
of L). However, by Lemma 12, the representation may be much more succinct. In theory, when there
are no uncontrollable transitions, a (particularly slow) supervisor can avoid storing the support table, and
perform the PSPACE binary search each time it needs to make a decision on a joint local state.
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Control Through Temporary Interaction

The control solution suggested here makes use of (semi-)global supervisor(s) to accumulate the joint
local states of several processes, when these processes cannot locally support transitions based on their
weak (or past) knowledge. In [6], a solution based on temporary synchronization between the processes
was suggested. Preference is given to supporting transitions locally. However, when the local knowledge
is not enough to support a transition based on the local information (including the case where it is
known that some other process currently has the knowledge),i.e., κπ does not hold, the process tries
to synchronize with other processes in order to achieve joint knowledge.

In order to put the solution in [6] in the context of the construction here, each process is, upon
reaching a state with local information whereκπ does not hold, willing to be involved in interactions
according toU . In order to implement this, each process maintains, for each local state (or, when using
past knowledge, for each history), the set of joint local states that contain its local state, and wheresupp
supports at least one transitionτ. Upon reaching that local state, the process is willing to participate in
interactions consisting of such joint local states. A successful interaction will allow firing transitions
according tosupp.

The coordination is facilitated through a protocol such as the α-core. Theα-core protocol, as de-
scribed in [19] contains a small error, which was automatically corrected using a genetic programming
tool in [9]. Each interaction consists of exchanging of somemessages, to request interaction, to allow it,
to confirm the interaction or to cancel it, etc. Obviously, there is quite a lot of overhead involved.

There are advantages and disadvantages to both approaches:using a (semi-)global supervisor and
using temporary syncrhonization. In particular, the latter is more flexible, as several interactions may be
performed in parallel, and there is no need to commit on the distribution of processes to the semiglobal
supervisors. On the other hand, it seems to require more overhead.

6 Reducing Process Hanging and Passing Responsibility

The introduction of a partial order≻ on the set of processes leads to a situation, where a smaller process
w.r.t. ≻ can avoid hanging on its supervisor if the bigger processes together can progress. Besides the
advantage of reducing the number of calls to supervisors, italso allows for providing a preference to
important processes, giving them an advanced access to supervisor support while reducing supervisor
interaction for lesser processes significantly.

This makes use of nested knowledge, a generalization of the property κπ to a set of processes
κΠ∨

t∈∪Π Ks
Πϕgood(t).

The intuition is that a process can check whether it knows that the joint knowledge of the other
processes, besides itself, is sufficient to support a transition, i.e., Kw

π κC \{π}. In this case, a process
may decide not to hang, but to rather let the others provide the joint local state needed for making
the progress decision. However, this solution makes it possible that too many processes will decide to
delegate responsibility to others, without informing them. This can lead to the introduction of a deadlock.

The use of the partial order≻ circumvents this problem. For a supervisorT i we useΠi = proc(T i)
to denote the processes it supervises. For a processπ, we denote withΠ≻π

i = {π′ ∈ Πi | π′ ≻ π} the
processes ofΠi that are strictly greater thanπ with respect to the partial order≻. Naturally, a supervisor
T i would support some transition based on the knowledge of the processes inΠ≻π

i if κΠ≻π
i holds. A

processπ can thus idle if it knowsKw
π
∨

Πi∈S κΠ≻π
i . This is used to reduce the states in which a process

hangs on its supervisor.
The control strategy of the supervisors is not affected. Theordered control strategyis as follows:
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1. If a processπ knows that a transition is good, then it supports it.

2. Otherwise, if a processπ knows that, for some transitiont ∈ π, a different process knows thatt is
good, thenπ idles.

3. Otherwise, if a processπ knows that, for some supervisorT i, the joint knowledge ofΠ≻π
i is that

somet ∈ Π≻π
i is good, thenπ idles.

4. Otherwise,π hangs on its supervisor.

Ordered control does not introduce new deadlocks.

7 Conclusions

We presented simple and effective algorithms for synthesizing distributed control. The resulting control
strategy uses communication and knowledge collection without blocking the processes unnecessarily.
One strength of our approach is that it is complete in the sense that, provided a centralized solution
exists, it finds a solution. However, this does not come at thecost of centralizing the control completely.
To the contrary, the system can progress without the supportof a global or regional supervisor as soon
as the local information suffices to do so.

Our solution for the distributed control of systems uses knowledge to construct a distributed con-
troller for a global constraint. In [1, 2], it is demonstrated that the local knowledge may be insufficient to
construct a controller. Knowledge of perfect recall [16], which depends not only on the local state (infor-
mation), but on the gathered visible history, can alleviatesome, but not all, of these situations. The use of
interprocess communication to obtain joint knowledge is suggested in [22]; however, no systematic algo-
rithm for collecting such knowledge, or for evaluating whenenough knowledge has been collected, was
provided there. In [6], joint knowledge is calculated through temporary multiprocess synchronization.
However, such synchronization is expensive, and multiple interactions (including different interactions
of the same set of processes) may require a separate synchronizing process. We presented here a practi-
cal solution, based on [1, 2, 6, 10, 11] for distribute control where a small number of (or even a single)
supervisor(s) run(s) concurrently with the controlled system.

While the classical synthesis problems for concurrent control of distributed systems are undecidabil-
ity [20, 24, 27, 28], we relax the synthesis assumption to allow additional interactions, when needed. We
believe that this makes a practical basis for synthesizing control for distributed systems. These methods
were implemented [6, 10, 11]. There are various tradeoffs inthe approaches presented, which calls for
further experiments and tuning.
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