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Classic distributed control problems have an interestiichatomy: they are either trivial or un-

decidable. If we allow the controllers to fully synchronizeen synthesis is trivial. In this case,
controllers can effectively act as a single controller vatimplete information, resulting in a trivial

control problem. But when we eliminate communication aredriet the supervisors to locally avail-

able information, the problem becomes undecidable. Inpdier we argue in favor of a middle way.
Communication is, in most applications, expensive, andikhbence be minimized. We therefore
study a solution that tries to communicate only scarcely ande allowing communication in order

to make joint decision, favors local decisions over jointidi®ns that require communication.

1 Introduction

Synthesizing code directly from a formal specification gy intractable. Although automated synthe-
sis is an attractive concept, neither is the practice of arogning currently under threat of extinction,
nor is automatic synthesis close to become a major factoodie generation. Still, some small critical
tasks or protocols may be quite tricky for a programmer talpoe and can greatly benefit from either
fully automatic synthesis or a computer assisted developmethodology. Prominent representatives
of such tasks are concurrency control protocols that gteeamutual exclusion, locking, or efficient
memory access. The most challenging programming probleensfeen concurrent in nature, and, alas,
synthesis of concurrent algorithms is undecidablé [20].

This undecidability result on synthesizing concurrentecpcbvides an important information about
how not to attack the synthesis problem: through a general catcegrithmic method. One common
practice to deal with an undecidable result is to restrietgbnerality of the problem. This can be done by
limiting the architecture of the systein |20,/ 13] 14, 5,[24, Positive results, however, are restricted to
very limited architectures, such as pipelines, rings, suagption about the hierarchy of memory access.

Another approach is to use a heuristic method, acceptingittn@ay not succeed in all cases. A
genetic search among the space of syntactically limitegnaras, which mutates existing candidates
and progresses based on ranking provided by model chedsimigscribed in[[7]. Instead of using
a direct synthesis algorithm, this technique generatedidate solutions, evaluates their quality (the
model checking is generalized to a fitness function thatnedéis the distance from a solution), and
adjusts them to fitter solutions. This method is successfalutomatically finding solutions to mutual
exclusion [[7] and leader election problems [8] and was ewvaduo detect and correct an error in a
complicated communication protocall [9]. In principle, Bugeuristic search techniques can be fully
automatic, though they require human interaction, thraegting the parameters or adjusting them after
an unsuccessful run, to be efficient.

We concentrate on synthesizing distributed confrol [22/283. Synthesis is achieved in an incre-
mental way: an already existing distributed system is medlifo satisfy an additional property. In our
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case, an invariant. Controlling the system is done by getdgtblocking transitions. ldeally, local de-
cisions can be taken by the processes themselves, or eilyaby supervisors (one per process) that
control the processes and synchronize with them. It turhghat the controllability problem (whether
such distributed control exists) is also undecidable [B], ven for simple safety properties such as
execution according to priorities|[6].

To challenge this undecidability result, we relax the peabland allow additional temporary inter-
actions between processes in order to allow them to acquifieisnt information to decide together on
allowing (the converse of blocking) a transition. Formathjs coordination is mapped to a supervisor. A
variant of this method is to partition the processes intaugsoof communicating processes, or, likewise,
to introduce regional supervisors and assign each prooes®etof them. These (regional) supervisors
collect enough process information to make control deggsidnder this assumption, all processes may,
at the limit, interact to decide globally on the executioreath transition. This reduces the problem, in
the limit, to a sequential control problem, which is trivfat finite state systems. The efficiency of this
method depends on the amount of additional synchronizageued to enforce the desired invariant.

The method we use to enforce control is basedkoowledgeld, [16]. Intuitively, in a distributed
system, the knowledge of a process includes all propettiasdlobally hold in all states consistent
with the local view of the process. It reflects limited viitlyi of processes about the situation in other
processes. The definition of knowledge is quite subtle, msaves some assumptions about the view
of a process. Indeed, in order to make a distributed con#oisébn, a process (or a supervisor process
synchronized with it) must make a choice that is good for afigible global states that are consistent
with its local view. As process knowledge may not be suffigiémeraction between processes may
be used to acquire the joint knowledge of several processaghermore, knowledge can be refined
based on the history of an execution. In this way, the numbpossible global states that are consistent
with the local view may be reduced, based on different hissorOn the other hand, using this kind of
knowledge requires the support of an expensive progransfseamation. We will discuss at length the
use of knowledge in constructing control for distributegtsyns.

The knowledge based control synthesis| [16, 11,12, 6] resttioe executions of the system. The
information gathered during the model checking stage id ase basis for a program transformation that
controls the execution of the system by adding constrainthe enabledness of transitions. This does
not produce new program executions or deadlocks and, coestlg preserves all stuttering closed|[18]
linear temporal logic properties of the system|[15] whenaimEss is assumed.

2 Preliminaries

We chose Petri Nets as our model because of the intuitive@mzise representation offered by them. But
the method and algorithms developed extend to other magledh, as transition systems, communicating
automata, etc.

Definition 1. A (1-safe) Petri NeN is a tuple(P, T,E, ) where
P is a finite set oplaces

the statesare defined as S 2° where g € S is theinitial state

T is a finite set ofransitions and

E C (PxT)U(T x P) is a bipartite relation between the places and the transgio

For a transition te T, we define the set ofput placest as{p € P | (p,t) € E}, andoutput places*® as
{peP|(t,p)cE}
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Figure 1: A Petri Net

Definition 2. A transition t isenabledn a state s, denotedt$, if °t Csand tNsC*®t. A state sisin
deadlockif there is no enabled transition from it.

Definition 3. A transition t can bdired (or executeflfrom state s to staté,denoted by|s)s, whent is
enabled ats. Then) s (s\*t) Ut".

Definition 4. Two transitions 1 and t are dependenif (°t; Ut;®) N (*t,Utx*) #0. LetDC T x T be the
dependenceelation. Two transitions arindependenif they are not dependent.

Transitions are visualized as lines, places as circlestlandelationE is represented using arrows.
In Figure[1, there are placqs, py, ..., p7 and transitionsa, b, ¢, d. We depict a state by putting full
circles, calledtokens inside the places of that state. In the example in Figurdel jritial statesy is
{p1, P2, p7}. The transitions that are enabled from the initial statesaa@db. If we fire transitiona
from the initial state, the tokens fromy, and p; will be removed, and a token will be placed . In
this Petri Net, all transitions are dependent on each osireze they all involve the plage;. Removing
p7, as in Figuré 2, makes bothandc become independent from bditandd.

Definition 5. Anexecutiorof a Petri Net N is a maximal (i.e., it cannot be extendedyaligéng sequence
of states and transitionsyigsit>sy ..., where g is the initial state, such that, for each statesrsthe
sequence,ifi;1)s.+1. We denote these executions by éXgc

For convenience, we sometimes use as executions just therssxjof states, or just the sequence of
transitions, as will be clear from the context. A stategiachablein a Petri Net if it appears on at least
one of its executions. We denote the reachable states ofidNeeN by reach(N).

We use places also as state predicates. As usual, wesnstg; iff p; € s and extend this in the
standard way to Boolean combinations on state predicates $tates, we denote by the formula that
is a conjunction of the places gand the negated places nosinThus,s is satisfied exactly by the state
s. For the Petri Net in Figurie 1, the initial stagsatisfiesps, = p1 A p2 A —pP3A—paA—ps A —ps /A Pr.
For a set of state® C S let ¢g = Vs, Or any logically equivalent propositional formula, be a
characterizing formuleof Q. As usual in logic, wheq and¢y characterize sets of stat€@sandQ/,
respectively, the® C Q' exactly whenpg — ¢ .

An invariant [3] ofN is a subset of the stat€sC 25, a netN satisfies the invariar@ if reach(N) C Q.

A generalized invarianbf N is a set of paird C Sx T; a netN satisfies! if, wheneversft) for a
reachables, then(s,t) € |. This covers the above simple case of an invariant by paujngvery state
that appears iQ with all transitionsT .

Definition 6. An execution of a Petri Net kestrictedwith respect to a setL Sx T, denoted exg@N),

is a maximal set of executiongttys, ... € exe¢N) such that, g is the initial state, for each states
s in the sequence;[§:1)S+1, and furthermorgs,ti;1) € |. The set of states reachable in ex@¢) is
denoted reaciN).
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Figure 2: A Petri Nets with prioritiea < d andb < ¢

Definition 7. For a set of executions X, let pref) be the set of prefixes (including full executions) of X.
Denote the last state of a finite prefixof an execution byast(h).

Lemma 1. reach (N) C reach(N) and exegN) C pref(exe¢N)).
As an example of a property we may want to enforce, considerifized executions.

Definition 8. A Petri Net with prioritiesis a pair (N, <) with N a Petri Net and< a partial order
relation among the transitions T of N.

Let l« = {(sit) | §t) andvt’ € T §t’) -t < t}. The set ofprioritized executions exec(N) of
(N, <) is the set of executions restrictedlto. The executions of the Petri Nkt in Figure[2 (when the
prioritiesa < d andb < ¢ arenottaken into account) includebcd acbd bacd badg etc. However, the
prioritized executions ofM, <) are the same as the executions of the Niat Figure[1.

Definition 9. A processtof a Petri Net N is a subset of the transitions T.

We will represent the separation of transitions of a PettiiNt® processes using dotted lines. We
assume a given set of procesgethatcoversall transitions of the net, i.el J . 1= T. A transition can
belong to several processes, e.g., when it models a syniztiom between processes. Ipgoc(t) = {1|
t € T} be the set of processes to whichelongs. For the Petri Net in Figure 1, there are two exegstio
acbdandbdac There are two processes: tle# processt = {a,c} and theright processt = {b,d}.

The neighborhoodof a set of processed includes all places that are either inputs or outputs to
transitions off1.

Definition 10. Theneighborhoochgh(t) of a processtis the set of placel).(*t Ut®). For a set of
processes] C ¢, ngh(M) = Upen NOK(T).

A set of processed ownsthe places in their neighborhood that can gain or lose a thkertransition
t only if t is exclusivelyin I1.

Definition 11. The set of placeswnedby a set of processes (including a singleton proc€sgjenoted
own(), is ngk(M) \ ngh(c \ M).

When a notation refers to a set of procesSesve will often replace writing the singleton process
set {1} by writing 1T, e.g., we writeown(r). Note thatngh(M1) Ungb(M2) = ngb(M1 UM3), while
own(M1) Uown(lMz) € own(MyUM3). The neighborhood of process in the Petri Net of Figuréll is
{p1, P3, Ps, p7}. Placepy is neither owned byy, nor byTt, but it is owned by{1y, 1% }. It belongs to the
neighborhood of both processes and acts as a semaphora.bé¢ captured by the execution @br of
b, guaranteeing that(ps A ps) is an invariant of the system.

Our goal is to control the system to satisfy a generalizedriant by restricting some of its transitions
from some of the states. The setting of the control problery im@ose that only part of the transitions,
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ct(T) C T, calledcontrollabletransitions, can be selectively supported by the procedbat contain it.
(It blocks if no processor supports it.) The other transgiac(T) =T \ ct(T ), areuncontrollable Note
that we may be at some state where either some uncontroliabisitions, or all enabled transitions,
violate the generalized invariant. Being in such stateBasefore “too late”; part of the controlling task
is to avoid reaching such states.

In control theory, the transformation that takes a systethalows blocking some transitions adds
a supervisor process [21], which is usually an automatohrtires synchronouslywith the controlled
system. This (finite state) automaton observes the coattgystem, progresses according to the transi-
tions it observes, and blocks some of the enabled transjtibepending on its current state. In a similar
way, in distributed control [29, 23, 22], for each processasgsign such a supervisor, which changes
its states each time the process it supervises makes ditvansir when a visible transition of another
process (e.g., through the change of shared variablese®ugd. Based on its states, the supervisor
allows (supports) transitions of the controlled processa Misjunctive control architecturg [29], if no
supervisor suports an, otherwise enabled, transitiomnihot execute and is thus blocked. Such a super-
visor can be amalgamated, through a transformation, it@dide of the controlled process. In order to
capture this for Petri Nets, without a complicated transisplitting transformation, we use an extended
model, as defined below. In particular, it allows adding déinglconditions and variable transformation
to capture the encoding of the local supervision of the geee. It would also allow encoding additional
asynchronous supervision in our solution.

Definition 12. An extended Petri Ndil2] is a Petri Net with a finite set of variables\bver a finite
domain per each processe . In addition, a transition t can be augmented with a predicaf on
the variables V= Urcpogt)Vn @and a transformation function;(M). In order for t to fire, ep must
hold in addition to the basic Petri Net enabling condition @ input and output places of t. When
t fires, in addition to the usual changes to the tokens, théakbes VY are updated according to the
transformation f.

We transform a Petri Netl and a generalized invariahtinto an extended Petri Nét' that allows
only the executions di controlled to satisfy.

Definition 13. A controlling transformation obeys the following conditions:
e New transitions and places can be added.
e The input and output places of the new transitions are disjfsom the existing places.
e Variables, conditions and transformations can be addeistiag transitions.
e Existing transitions will remain with the same input andpmuttplaces.
e Itis not possible to fire from some point an infinite sequeresisting of only added transitions.

Added transitions are grouped into new (supervisory) meee. Added variables will represent some
knowledge-dependent finite memory for controlling the eggtand some interprocess communication
media between the original processes and the added onegsBes from the original net will have dis-
joint sets of variables from one another. The independert&den the original transitions is preserved
by the transformation, although some coordination may bereed indirectly through the interaction
with the new supervisory processes.

Definition 14. Let § - map a state s of the transformed versiohiio the places of the original version
N by projecting out additional variables and places thdthay have on top of the places of N. This
definition is also extended to executions (as sequenceste$kst
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This projection allows us to relate the sets of states of thgghal and transformed version. Firing
of a transitions added by the controlling transformatioesiaot changs| and is not considered to
violate| (the requirement thds,ti. 1) in Definition[8 is imposed only whety, ; is from the original net
N). Note that our restrictions on the transformation imptlest the setsigh(I') andown() for N C ¢
are not affected by the transformation. Furthermore, atheirich structure of extended Petri Nets, our
control transformation will allow a finite state control faffinite state system.

Definition 15. Two execution® and o’, viewed as sequences of states, are equivalent up to stutter
ing [18] when, by replacing any finite adjacent repetitiontbé same state by a single occurrence in
botho or o', we obtain the same sequence. Let stlitcbe the stuttering closure of a debf sequences,
i.e., all sequences that are stuttering equivalent to soeqeiences ifr.

Lemma 2. A controlling transformation produces an extended Petrit W& from N such that
exe¢N’)[ - C pref(stutcexeg¢N))).

The controlling transformation may introduce new deadépdience the lemma above asserts about
the prefixes of the original executions. Of course, this isasndesirable outcome of the control transfor-
mation, and the solutions that will be given to the distrdalicontrol problem will circumvent it.

3 Process Knowledge and Joint Process Knowledge

The knowledge of a process at a given execution point caneistacts that hold in all global states
that are consistent with the current local view of this pssceThe current local view represents the
limited ability of a process to observe the global state efdiistem. A process may be aware of its own
local variables and shared variables in its neighborhoadil&ly, we can define the joint knowledge of
several processes, by considering their joint local view.

According to the limited observability of the processéswe can define an equivalence relation
=nC Sx S (when the set of processé€kis a singleton, we can writes) among the stateS of the
system; if the current state $s= S then the processés$ cannot distinguish, given their joint local view,
betweers and any state equivalent to it accordingetga. Such an equivalence relation is the basis of the
definition of knowledgel[4].

Definition 16. The processeB (jointly) know a propertyy in a state s, denoted}s Knu, if, for all ¢/
such that s=n S, we have that's= .

In the Petri Nets model, the equivalence relatiog can be defined by restricting first each state
to a part of a state. Then, states that share the same panresiedered equivalent. There are several
possibilities to restrict the part of a state that is assedisvith a subset of the processésWe will give
two possibilities for such a restriction. The first one isttbflocal information which takes the part
of the state that includes the neighborhood of the procd3seghis Petri Nets definition corresponds,
in general systems, to the variables that can be read oewriy the processds. The second such
restriction is that oflocal state(different names were chosen only to make a distinctionyeticon
restricting states to the places that the proceBkesvn. This corresponds, in general systems, to the
variables that only the procesddsand no other processes, can change (write).

Definition 17. Thelocal informationof a set of processed of a Petri Net N in a state s is|[g=
snnbg(M).

In the Petri Net in Figurg]1, the local informationmfin any states consists of the restriction afto
the placeq p1, ps, Ps, p7}- In the depicted initial state, the local information{is, p7}.
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Definition 18. Thelocal stateof a set of processd3 of a Petri Net N in a state s ig g= snown().

It is always the case thatn C s[n. The local state oft in the initial state of Figurel1 i§p; }.
Lemma 3. If ¢ M then § ¢y is the (disjoint) union of g and §xNown(M U {11}).

In the following definitions, we can often use either the Iaoformation or the local state. When
this is the case, we will usgn instead of eithes[ or s|.

Definition 19. Let N C ¢ be a set of processes. Define an equivalence relatig reachN) x
reachN) such that s=n S when $7 =<|n.

As gjn can stand for eithes[ or s|n, this gives two different equivalence relations. When it is
important to distinguish between them, we denote the onedbas /" as =§ (weak equivalence) and
the one based on* as =}, (strong equivalence).

Lemma 4. Ift € mand s=% s then gt) if, and only if, §[t).

That is, the enabledness of a transition depends only onotta@ Information of a process that
contains it. This does not hold when we replaeg by =3. In the Prioritized Petri Net in Figuld 1,
e.g., we have thaftp, p2, p7} =§ {P1, P4, P}, sincery has the same local informatidmpy, p7} in both
states. The statgp;, p4} is not equivalent to either of these states. On the other,lthade three states
are equivalent according te; (py is notinown(Ty )).

Corresponding with the two equivalence relations of Deéinifl9, we distinguish between knowl-
edge based on strong equivalereg (and hence on local states), denok&lh and knowledge based
on weak equivalences{j (and hence local information), denot&g¢. The knowledge based on the
local state (resp. local information) is callstdong (respweak) knowledge. Since the local information
determines the local state (while multiple local states imaye the same local information), we have
Kgo — K. Consequently, we magnowmore under weak knowledge.

The motivation for the different definitions of equivalenaed, subsequently, the different defini-
tions of knowledge is as follows. In order to make choices(ipport or block a transition) that take into
account knowledge based on local information, a processset of processes, needs to have some guar-
antee that the local information will not be changed by offitecesses while it is collecting information
from the processes or making the decision. For a single psotieis may be achieved by the underlying
hardware. But it is unreasonable to require such a guarémteeset of processes that either temporary
interact (interactions take time and other processes maywigle progress) or send their current local
view to some supervisor process that collects views frorars¢processes. Thus, for decisions involving
a set of processes, strong knowledge, based on the jointsiate, is used instead.

The classical definition of knowledge is based on relatispsover the reachable state=ach (N).
However, when using knowledge to control a system to satigfgneralized invariant, one may calculate
the equivalences and the knowledge based on the sestels(N) that appear in the executions of the
original system that satisfy this generalized invaribntThis (cyclic looking) claim is proved [2] by
induction on the progress of the execution in the controfiggtem: for a state already on such an
execution (by the inductive assumption) the controlledesysallows firing only transitions that preserve
the generalized invariant, hence is alsoegach (N). We may need to restrict the generalized invarlant
in order not to introduce new deadlocks. This means everrf@aehable states, which can consequently
increase the knowledge further.

One of the main challenges of using knowledge for contrglgstems is that it is not always possible
to decide, based on the local (or joint) knowledge, whetmarab allowing a transition will guarantee
the desired generalized invariant. One tool that can beingbds case is to allow additional interactions
between processes, or knowledge accumulation by additamyachronous supervisors. This will be
explained later. However, before progressing to such aaresipe solution, we may also try to improve
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the knowledge by refining the equivalence relation that é&lus its definition.

The definitions of knowledge that we used assumes that thegses do not maintain a log with their
history. The use of knowledge with such a log, callembwledge with perfect recall6], is discussed
in [1]. Consider an equivalencer between histories that seem undistinguishable to the gsacelwo
finite prefixesh, i’ of Petri Net executions will be considered equivalent4gy if the projection ofh
on transitions visible tat are the same in bothandh'. Specifically for Petri Nets, we can define the
transitionsvis(t) = {t|(*t Ut®) Nnngb(t) # 0} (t is dependent on some transitionsiin In this case, the
last statedast(h) andlast(h’) of h andl, respectively, are equivalent undel’ (and hence also under
=S). This can be shown by induction over the length of the prefikased on the fact that only the
transitions invis(m) affectngh(tt) O own(1).

Definition 20. Let hj= g exactly when lagh) = g. Then we definpast knowledgewhere h= KR if,
for all h’ ~h, h|= .

In particular for propertieg) that depend only on the last statelpfthe use of the history refines
the weak equivalence between statéss b implies last(h) =} last(lY). To take advantage of the
refined definition of knowledge, we need somehow to distisiglbcal states that have non equivalent
histories. On the face of it, this seems to require unboumdehory. However, looking deeper into the
new definition of knowledge, one can observe that the folhgufinite construction will work([186,/1].

Definition 21. Let A, be the set of finite sequences of transitions that do not eh#rgneighborhood
of it (i.e., independent with the transitionsm.

Definition 22. Leta = (S 5, T) be a finite automaton representing the global states S ofralet N,
including the initial state g€ S and the transitions T between them. For each prooga® construct an
automatong; representing the set of statesafwhere the Petri Net N can be after a given local history.
The automatom; has the following components:

e The set of states 5.

e Theinitial state is the set of statésIu e A st.so[W)s}. Thatis, the initial state of this automaton
contains all states obtained frorg By executing a finite number of transitions independent ef, (i
invisible to)Tt

e The transition relation i§ — ' between two statds ' € 25and a transition t= T is as follows:
M={s|3selJue A,st.,sftws}. Thatis, a move frorfi to '’ corresponds to the execution of
a transition t that changes the neighborhoodrdbllowed by transitions independent rof

Then, one may us&Ry instead ofKY for locally supporting transitions. (Note thit! — KR.)
However, the size of each such automaton (one per pragess be exponential in the size of the global
state space. Knowledge of perfect recall can be implemeénteiding a synchronized supervisor with
memory (basically implementing the automatag). It is natural to ask whether one can make an even
finer distinction between states than with knowledge ofgutnfecall. This is indeed possible, but at the
cost of a more involved program transformation. We may aunjrimeour transformation the context of
the interprocess communication between processes witticadd transformation, that would implement
the support for additional knowledge. Such a transformatan, e.g., be based on Gossip Automata [17],
providing the most recent past local view of any other preces

We henceforth use knowledge formulas combined with Bootgserators and propositions. For a
detailed syntactic and semantic description of logics Witbwledge one can refer, e.g., to [4]. Orgde
Kn is definedp can also be a knowledge property, heaeeKr Kn (knowledge about knowledge) is
also defined, though the finite-state representation destabove only applies to past knowledge used
in outermost knowledge operators.
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Lemma5. If s = Kpnd and s=n S, then $ = Kn¢.

Lemma 6. Knowledge is monotonic with respect to the set of observingesses: ifl1’ C I then
K — Knd.
Lemma 7. Given that = Kn ¢ in some basic Petri Net N, thersKn ¢ also in a transformed version’N

Enforcing prioritized executions in a completely disttisti way may be impossible. In Figure2,
andc belong to the left process, andb andd belong to the right process, with no interaction between
the processes. The left procagsupon having a token ip;, cannot locally decide whether to execute
a; the priorities dictate tha can be executed @ is not enabled, sincahas a lower priority thad. But
cannot distinguish between the cases whereas a token i, ps, Or pe.

In the Prioritized Petri Net in Figuid 2, e.g., we have thpd, p2} =y {p1, P4}, since in both states
1y has the same local informatidip; }. In the state{ps, p2}, ais a maximal priority enabled transition
(incomparable withb), while in {ps, ps}, @ is not maximal anymore, as we have tak d, and both
a andd are now enabled. In the initial state the local informatiand also the local state) af is
{p1}. Thus,y does not have enough knowledge to support any transitiae $io, p2} =§; { P2, P3})-
Similarly, the local information oft is {p2}, which also is not sufficient to support any transition. Afte
they both hang on a supervisor, it has enough informationpparta or b.

4 A Globally Controlled System

Before providing a solution to the distributed control desh we need to provide a solution to the related
global control problem. Some reachable states are not eflaxecording to the generalized invariant.
In order not to reach these states, resulting in an immedygideadlock, we may need to avoid some
transitions that lead to such states from previous statas.i¥ done using game theoretical search.

The game is played betweercanstructor who wants to preserve the generalized invarlandef-
initely (or reach a state that is already a deadlock in thgiral systenN), and aspoiler, who has the
opposite goal. The game is played on the st&e$ a net. It starts from the initial stag and ends
if a deadlock state is reached (and may go on forever). In sagid, the constructor player chooses a
nonempty subset of enabled transitions that must includenabled uncontrollable transitions. Subse-
qguently, the spoiler chooses a transition from this setctvig then executed. The spoiler wins as soon
as she can choose a transition that violdtdse., (s,t) ¢ |, while the constructor wins if this condition
never holds (on an infinite run or a finite run that ends in a lbe)l

We can define an “attractodttr(A) that contains all states iA and all states that the spoiler can

force toAin a single transition. A stateis in attr(A) if one of the following conditions holds:
e SCA

e there exists an uncontrollable transitibre uc(T) enabled ins with sft)s’ and eithers' € A, or
(sit) €1, or

e sis not a deadlock state in the Petri Neand, for all transitions enabled irs, such thasft)s' and
(s,t) €1, it holds thats' € A.

As usual, we definattr™1(A) = attr(attr"(A)), whereattr®(A) = A. Because of the monotonicity
of theattr(A) operator (with respect to set inclusion) and the finitenés¢iseostate space, there is a least
fixpoint attr* (A), which isattr"(A) = attr"™1(A) for some (smallest).

Now, letlg = {(s,t) € | | §t)s ands' ¢ attr*(0)}. Let G =reach,(N) if s ¢ attr*(0), otherwise
G = 0. These are the “good” reachable states in the sense thaatbejlowed byl and the system can
be controlled to henceforth adherelto
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Definition 23. Let R={(s;t) €| | 3s's[t)s A s,S € G} be thesafe transition relatian

If the initial state is goodg, € G), then the constructor can win by playing accordingdRtolf, on
the other handy is in the attractoattr*(0) of the bad states, theg is in attr"(0) for somen < |S. By
the definition ofattr"(0), the spoiler can force the gameatir"=1(0) in the next step, then tattr"=2(0),
and so forth, and thus make sure the bad states are reacléa atimost steps.

Lemma 8. The constructor can force a win if, and only if, s G.

This game can obviously be evaluated quickly ondkplicit game graph, and hence in time expo-
nentially in the number of places. EXPTIME completenesslmdemonstrated by a simple reduction
from thePEEK-Gs [26] game [10]. Deciding if the constructor can force a wiltiBPACE complete for
Petri Nets with only controllable transitioris [10].

Model Checking

We will use the following propositional formulas, with pragitions that are the places of the Petri Net:
- The good state&: ¢g.
- The states where a transitioims enablediey) -
- At least one transition is enabled, i.e., there is no dekdi®gr = Vit Pent)-
- Transitiont is allowed from the current state by the safe transitionti@ieR: ¢gooqt)
- The local information (resp. local state) of procesSest states: ¢, (resp.bs),,)-

The corresponding sets of states can easily be computed dglrabecking and stored in a compact
way, e.g., using BDDs. Given a Petri Net, one can perform ingduecking in order to calculate whether
s = Kny. The processes know U at states exactly when¢g A ¢g,) — W is a propositional tautology.
We can also check properties that include nested knowlegigantply checking first the innermost
knowledge properties and marking the states with additiorepositions for these innermost properties.

Model checking knowledge using BDDsristthe most space efficient way of checking knowledge
properties, sincebg can be exponentially big in the size of the Petri Net. In ayjpomial) space
efficient check (which has a high#me complexity), we enumerate all stat€ssuch thats=r s, check
reachability ofs' using binary search, and, if reachable, check whethery. This can also be applied
to nested knowledge formulas, where inner knowledge pti@seare recursively reevaluated each time
they are needed. The PSPACE complexity is subsumed by th& BX¥Pcomplexity in the general case
algorithm for the safe transition relatidh

5 Control Using Knowledge Accumulation

According to the knowledge based approach to distributetrel[1,[6,2/ 22], model checking of know-
ledge properties is used at a preliminary stage to determiven, depending the local information, an
enabled transition can safely be fired. In our case, this melaeckings = Ki/dgooqt) (by Lemmdb, the
satisfaction only depends @fi;). At runtime, a processupportsa transition in every local information
where this holds. The followingupport policyuses this information at runtime:

A transitiont can be fired (is enabled) in a state when, in addition to itgirval enabledness
condition, at least one of the processegrioc(t) supports it.

Enabled uncontrolled transitions can always be suppoa®d,consequence of the following Lemma.
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Lemma 9. Ift € mNug(T) and(s;t) € R, then §= Kfdgooqt)-

This follows from the observation that the safe transitielation does not restrict the uncontrolled
transition.

It is possible that, in some (non deadlock) state&spho process has enough local knowledge to
support an enabled transition and, furthermore, no unclteitie transitions are enabled. We may need
to synchronize several processes or collect the joint kedgé of several processes through the use of
asynchronous supervisors. A process can decide, based ouarient (lack of) knowledge, whether
it hangson such supervisor by sending it its local state. A supervisa@an make a decision, based
on accumulated joined knowledge of several hung procetfisaispne of them can support an enabled
transition. A process hangs on a supervisor, when the follpwropertydoes nohold:

K= \/ Kreq)goodt) N K# \/ \/ KTV\(Id)goodt)
tem TUATILETT
That is, a process does neither hang on the supervisor whas &nough knowledge to support a tran-
sition, nor if it knows that some other process has such kedgé. In the latter case, it does not actually
need to be able to determine which process has that knowledge

To avoid the overhead of computing past knowledge, it isnotfleeaper (and more appropriate) to
use weak knowledge instead. In case nested knowledge atideuls too expensive as well, we may
use the simplified knowledge formula . Kr'dgooqr) instead, at the expense of making more processes
hang.

The supervisorr keeps the updated joint local state of the hung proce3se¥/hen a process
hangs, it updates this view by transmittingztats local informations|,;, from which7 keeps (according
to LemmdB)[Nown(MU{Tt}). Since all processes M’ = MU {1} are now hung, no other process can
change these places. Then the joint knowledgeabyo041) Can be used to support a transitiorRecall
that knowledge based decisions of a single process use wealtddge (based on the local information),
while multiple processes use strong knowledge (i.e., basdte joint local state).

In the following cases,

1. after the decision of a procerso hang onr , other processes make changessdocal informa-
tion that allow it to support some transition

2. when a transition with {1, '} C proc(t) is supported byt while 1tis hung, or
3. when an uncontrollable transition executed (which isltheven if it belongs to a hung process),

we allow 1t to notify 7 that it has decided not to hang on it anymore. Moreowerwhich acquired
information about the hung procesdeswill have to forget the information about the plaaesn(1) \
own(M\ {1}). The ability of processes to hang on a supervisor but alsoogress independently before
the supervisor has made any supporting choice requires pootecol between the processes and the
supervisor.

Instead of having a single supervisor, we can use several supervisars 7o, ..., 7k, where each
supervisor7; takes care of a set of procesg@®c(7;). These sets are pairwise disjoint and do not
necessarily cover all processes.

An effectively checkable criterion to determinte if at lease process or supervisor will be able to
provide a progress from any nondeadlock staté is as follows:

(b A bgf) — \/ Kn¢gooc(t \ \/ \/ KSroc(f[i)q)gOOC(t))

temec i€l.. k temeproc(7i)
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Lemma 10. Under our transformation from a Petri Net N to an extendediRget N, exe¢N’)[-C
stutclexeg¢(N)) holds.

This is proved by induction on prefixes of the execution andgutsemmd.2.
Lemma 11. N’ satisfies all stuttering invariant temporal properties of N

Implementing the Supervisors

Processes hang on a supervisor in some arbitrary order.upeewssor needs to decide, based on the part
of the global state that it sees, whether or not there is d@nmigrmation to support some transition.
Definition 24. Let L= {s|n x| s€ G,MN C ¢} denote the set gbint local stateseach paired up with
the set of relevant processes (therxx@ C L). We define=C L x L (and, symmetrically2) as follows:

qC d ifq=(s|n,,M1),q9 = (s|n,,M2) (i-e., both are part of the same global state s) &hdC M. We
say that §subsumes.

Definition 25. The support function suppL — 27 returns, for each o= L, the transitions that are
allowed by R from all states that subsume q. Formally, $gpg Ns)oq{t [t € T,(st) € R}.

That is, forq = (s[n,M), t € supfq) iff s = KZPgooqr)- If t € supp(a) Nct(T), then the supervisor
can select a processmnoc(t) to support. Obviously, whem C d, supdq) C supd'). There is no need
for a supervisor to store in the domainsafppelementsy = (s|n, M) where|| < 2: whensupfq) # 0,
the process with this local state can locally support a ttianswithout the help of a supervisor.
Definition 26. Let~C L x L be such that - ¢ if g = (s|n,M) and d = (s|nug, MU {T4), where
i M (i.e., d extends g according to exactly one process).

The supervisor updates its view about the joint local sthtbeprocesses according to the relation
~»: when moving fromg to g by acquiring the relevant information about a new processaonse-
quently, its knowledge grows and it can decide to supportadrtlee transitions irsupgq).

Definition 27. A joint local state g isninimal supportingf supp(q) # 0 and, for each gsuch that ¢~ q,
suprd) = 0.

Definition 28. Theupward closurg'U of a subset of the joint local statesUL is{qeL |3 eUd C
q}.

Lemma 12. A sufficient condition for restricting the domain T L of supp for a supervisor, without
introducing new deadlocks, is thatxG{c} CtU.

Thus, there is no need to calculate and stdtg¢he cases of the functiosupp This suggests the
following algorithm for calculating the representatioml&for supp perform DFS such that if~
thenq is searched beforg; backtrack when visiting) again, or whersupfq) # 0. This algorithm can
be used also for multiple supervisors, when restrictingsdeerch to the joint local statesdfC proc(7;)
for eachT;.

In order to reduce the set of local states that a supervisedsn® keep in the support table, one
may decide that a supervisor will not always support tréorsit as soon as the joint local state of the
hung processes allows that. This introduces further defagecisions, where the supervisor waits for
more processes to hang even when it can already support samséibns. On the other hand, the set of
supported transitions may be larger in this case, allowingenrmondeterminism.

The size of the global state space of a Petri Net isd‘”). Since we need to keep also the joint
local states, the size of the support table that we store iparsisor, is ino (2P1+¢1) (which is the size
of L). However, by Lemma2, the representation may be much mmarst. In theory, when there
are no uncontrollable transitions, a (particularly slowpervisor can avoid storing the support table, and
perform the PSPACE binary search each time it needs to mageisiah on a joint local state.
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Control Through Temporary Interaction

The control solution suggested here makes use of (senbgbkupervisor(s) to accumulate the joint
local states of several processes, when these processes tmually support transitions based on their
weak (or past) knowledge. 1hl[6], a solution based on temp@wnchronization between the processes
was suggested. Preference is given to supporting transitoxally. However, when the local knowledge
is not enough to support a transition based on the local imdition (including the case where it is
known that some other process currently has the knowledge)k™ does not hold, the process tries
to synchronize with other processes in order to achieve kpiowledge.

In order to put the solution in_[6] in the context of the constron here, each process is, upon
reaching a state with local information whe«8 does not hold, willing to be involved in interactions
according tdJ. In order to implement this, each process maintains, foln éazal state (or, when using
past knowledge, for each history), the set of joint localestahat contain its local state, and wheupp
supports at least one transition Upon reaching that local state, the process is willing tigipate in
interactions consisting of such joint local states. A sasfid interaction will allow firing transitions
according tassupp

The coordination is facilitated through a protocol suchlesot-core. Thea-core protocol, as de-
scribed in[[19] contains a small error, which was autom#yicarrected using a genetic programming
tool in [9]. Each interaction consists of exchanging of sanessages, to request interaction, to allow it,
to confirm the interaction or to cancel it, etc. Obviouslgrthis quite a lot of overhead involved.

There are advantages and disadvantages to both approardeg:a (semi-)global supervisor and
using temporary syncrhonization. In particular, the lagenore flexible, as several interactions may be
performed in parallel, and there is no need to commit on th&ildution of processes to the semiglobal
supervisors. On the other hand, it seems to require mor&eadr

6 Reducing Process Hanging and Passing Responsibility

The introduction of a partial order on the set of processes leads to a situation, where a smaltergs
w.r.t. = can avoid hanging on its supervisor if the bigger processgsther can progress. Besides the
advantage of reducing the number of calls to supervisom@sd allows for providing a preference to
important processes, giving them an advanced access tovaguesupport while reducing supervisor
interaction for lesser processes significantly.

This makes use of nested knowledge, a generalization of thgefy K™ to a set of processes
K™ Vieun KR Pgoodt)-

The intuition is that a process can check whether it knows tthe joint knowledge of the other
processes, besides itself, is sufficient to support a transii.e., K}"[’Kf\{”}. In this case, a process
may decide not to hang, but to rather let the others providejdmt local state needed for making
the progress decision. However, this solution makes itiplesghat too many processes will decide to
delegate responsibility to others, without informing théfhis can lead to the introduction of a deadlock.

The use of the partial order circumvents this problem. For a supervisgmwe usell; = proc(7;)
to denote the processes it supervises. For a pratese denote witH1; ™ = {17 € MM; | ¥ > 1t} the
processes dil; that are strictly greater thamwith respect to the partial order. Naturally, a supervisor
7; would support some transition based on the knowledge of theepses if1; ™ if k™" holds. A
processit can thus idle if it knowsK¥ V< k™", This is used to reduce the states in which a process
hangs on its supervisor.

The control strategy of the supervisors is not affected. drdered control strategis as follows:
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1. If a processtknows that a transition is good, then it supports it.

2. Otherwise, if a process knows that, for some transitiane 1, a different process knows thiats
good, thermtidles.

3. Otherwise, if a process knows that, for some supervisar, the joint knowledge of1; ™ is that
somet € N is good, thermtidles.

4. Otherwiseythangs on its supervisor.

Ordered control does not introduce new deadlocks.

7 Conclusions

We presented simple and effective algorithms for syntivegidistributed control. The resulting control
strategy uses communication and knowledge collectionowittblocking the processes unnecessarily.
One strength of our approach is that it is complete in theeséimst, provided a centralized solution
exists, it finds a solution. However, this does not come attist of centralizing the control completely.
To the contrary, the system can progress without the sugbartglobal or regional supervisor as soon
as the local information suffices to do so.

Our solution for the distributed control of systems useswkadge to construct a distributed con-
troller for a global constraint. In[L]2], it is demonstratiat the local knowledge may be insufficient to
construct a controller. Knowledge of perfect recalll[16high depends not only on the local state (infor-
mation), but on the gathered visible history, can alleviatae, but not all, of these situations. The use of
interprocess communication to obtain joint knowledge ggasted inl[22]; however, no systematic algo-
rithm for collecting such knowledge, or for evaluating wherough knowledge has been collected, was
provided there. In_[6], joint knowledge is calculated thghuemporary multiprocess synchronization.
However, such synchronization is expensive, and multiperactions (including different interactions
of the same set of processes) may require a separate syizamggorocess. We presented here a practi-
cal solution, based on][1] 2} 6,110,/ 11] for distribute cdnivbere a small number of (or even a single)
supervisor(s) run(s) concurrently with the controlledtsys

While the classical synthesis problems for concurrentrobof distributed systems are undecidabil-
ity [20,[24,[27] 28], we relax the synthesis assumption mnaldditional interactions, when needed. We
believe that this makes a practical basis for synthesizamgrol for distributed systems. These methods
were implemented [6, 10, 11]. There are various tradeofthénapproaches presented, which calls for
further experiments and tuning.
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