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We exploit (co)inductive specifications and proofs to apptothe evaluation of low-level programs
for the Unlimited Register Machine (URMyithin the Coq system, a proof assistant based on the
Calculus of (Co)Inductive Constructiongpe theory. Our formalization allows us to certify the
implementation of partial functions, thus it can be regdra®a first step towards the development of
a workbench for the formal analysis and verification of bathwerging and diverging computations.

1 Introduction

In this paper we report and discuss a formalization ofliléimited Register Machin€URM) and its
semantics within th€alculus of (Co)Inductive Constructiog€CC'nd.

The URM is a mathematical idealisation of a computer, ond@férmal approaches to characterize
the intuitive ideas of computability and decidability [1Zrograms for the URM are low-level, essen-
tially assembly-like, and their execution gives rise tohbodnverging and diverging computations. This
is a typical situation where it is required to define and raammoutcircular, potentially infiniteobjects
and conceptd,e. systems with infinitely many states. Since structural atidu trivially fails on these
systems, one may resort to stronger approaches, such asg ather ones;oinduction

Coinductive principles can be stated and exploited in dbffé settings. From aet-theoretical
standpoint coinduction arises when objects are viewaniasmal fixed-point®f monotone operators,
whereas theategoricalapproach is developed throudfimal) coalgebras To develop the present work,
we settle within thdogical system ofintuitionistic Type Theory

Actually, in intuitionistic type theory infinite objectsemanaged througtoinductive typesthese,
roughly speaking, are collections of elements whose cocigbn requires an infinite numbers of steps.
In particular, a handy technique for dealing with coinduetiefinitions and proofs within GE)nd
was introduced by Coquand![8] and refined by Giménez [17th&lgh providing a limited form of
coinduction, such an approach is particularly appealirgabseproofs carried out by coinduction are
accommodated as any other infinite, coinductively defingdabb Remarkably, such a technique is
mechanised in the syste@ioq [26]: this, one among the rare interactive environments ithalement
coinductive definition and proof principles, is an appresgaproof assistant, due to the fact that the
automatization and the interaction with the user are walhced.

In this paper we formalize the URM and its semantics from thiatpof view of theprogram cer-
tification. In our opinion, such an encoding within a coinductive forsystem, such as GE)'"d has
several benefits. First it is interestipgr se as experiments about the encoding of computability models
are still lacking. Then it may be valuable in education, byirgy the opportunity to undergraduate stu-
dents (computability is actually a basic computer sciermgse) to experiment with non-standare.(
coinductive) tools within a concrete, relatively simpleglgation. Further it might be useful in the area
of program transformations, because the formal treatmfdotwelevel languages is mandatory to certify
components of programming languages, such as type-clsedhkiarpreters, and compilers. Last but not
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the least, the present, novel theoretical case study vgigsethe broad applicability of coinduction as a
verification technique on infinite-state systems and theifstgnce of its mechanisation.

Besides the points mentioned above, we claim that the adiginof this paper relies also on the
presentation of the encoding, which is illustrated andudised without showin§@oq code, but via the
more abstract level of C€2' (in any case, th€oq code is available to the interested reader at the web
page of the authof [7]), thus providing the reader with aneegedagogic value.

In the next section we illustrate coinduction within €€ then in the following four sections we
develop the formalization of the URM, dealing with prograresmputations and functions; finally we
discuss directions for further investigations in the lightvhat we achieve and of related work.

2 Coinduction in cc(C0)ind

The formal treatment of infinite objects and concepts is sapp by CE“?'" via the mechanism of
coinductive types. These, by providing the user with a Bahitorm of recursion, allow the formalization
and the management of infinite data and infinite proofs.

First of all, one may define concretmfinite objects {.e. data) as elements @binductive types
which are fully described by a set obnstructord. From a pure logical point of view, the constructors
can be seen astroduction rulesthese are interpreted coinductivelg. they are applied infinitely many
times, hence the type being defined is inhabited by infinijeab:
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In this case we have formalized infinite sequencesstreams of bits, a coinductive type we nang
Optionally, coinductive types may contain finite objects, tihat is,potentiallyinfinite objects; in such a
case als@onstantconstructors, besides the recursive ones, have to be éédclar
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So doing, we have defindd the type of sequences of both finite and infinite lengéh)azy lists of bits.
Once a new coinductive type is defined, the system providesratically thedestructorsi.e. an
extension of the native pattern-matching capabilitzdosumehe elements of the type itself. Therefore,

coinductive types can also be viewed asltrgestcollection of objects closed.r.t. the destructors.

Consistently with this intuition, the destructazannotbe used for defining functions by recursion
on coinductive types, because their elements cannot beicmtsdown to a constant case. The natural
way to allow self-reference is to consider the dual perspedf building individual, constant elements
in coinductive types. Such a goal can be fullfilled throlagy corecursivdunctions:

zeros £ 0:zeros

odd(s) £ matchswith a:b:s = a:odd(s)

ever(s) £ matchswith a:b:s = b:ever(s)

mergés,t) = matchswith as’ = matcht with bit’ = azb:mergds,t’)

Corecursive functions produce infinite objects and may lenetype as domain (note that in the last
three definitions we have applied thmatchdestruction operation on a parameter of the domain). Iefinit

1The constructors must respeditaict positivity constraintondition to guarantee the reduction termination of thewdas.
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objects are not unfolded, unless their components areoitipleeded, “on demand”, by a destruction
operation. Therefore, to prevent the evaluation of comaearfunctions from infinitely looping, their
definition must satisfy guardedness conditiorevery corecursive call has to be guarded by at least one
constructor, and by nothing but construdforhis way of regulating the implementation of corecursion
captures the intuition that infinite objects are built via tteration of an initial step.

Given a concrete coinductive type (suchSasndL above), no proof principle can be automatically
generated by the system: in fact, proving properties almimite objects requires the potential of build-
ing proofswhich are infinite as well! What is needed is the desigadrhoccoinductivepredicatesi.e.
coinductivepropositions which are actually inhabited by sudaffinite proof. The traditional example
is point-wise equality (also known &ssimilarity), that we define on streams and name& Sx S

be{0,1} s~t
b:s~ bt

Two streams are bisimilar if we cabservehat they have equal heads and recursivedycoinductively
their tails are bisimilar. Once this new predicate is defjribed system provides the correspondprgof
principle, to carry out proofs about bisimilarity: such a tool, nangedrded inductiorprinciple [8,[17],
is particularly appealing in a context where proofs are mgadaas any other infinite object.

In fact, a proof by guarded induction is just an infinite objbuilt by lazy corecursion (hence it
must respect the same guardedness constraint that lagyucsive functions have to). Remarkably, the
mechanization of the guarded induction principle providdsandy technique for the construction of
infinite proofs, which can be carried out interactively tigh thecofix tactié. This tactic allows to
build infinite proofs adgnfinitely regressiveproofs, by assuming the thesis as an extra hypothesis and
using it carefully later, provided its application is guaddby constructors. This “internal” approach is
very direct, compared to the traditional techniques basefisimulations, because the proofs do not
need to be exhibited beforehand, but can be built incrergnia tactics.

To illustrate the support provided by thef ix tactic, we pick out the following coinductive property:
VseS mergéodd(s), everis)) ~ s

We prove this proposition by mimicking the top-down procégtice of CE“?'d, First, the coinductive
hypothesis is assumed among the hypotheses and the siisagestructed two times inta:b:t; then
the corecursive functionsdd, evenandmerge in turn, may perform a computation step; finally the con-
structor(~)., is applied twice. In the end, we have reduced the goal to preergéodd(t), everit)) ~t,

a proposition which is an instance of the coinductive hypsith Therefore one is eventually allowed to
exploit the coinductive hypothesis itself, whose appiarats now guarded by the constructer)... The
application of the coinductive hypothesis completes tlfrand intuitively has the effect of repeating
ad infinitum the explicit, initial proof segment, thus realig the “and so on forever” motto.

To avoid ambiguity with genuine induction, we say that thegbthas been performed tsgructural

2gyntactically, the constructors guard the recursive aallthe left”.

3This distinction between concrete objects and proofs paint that sets inhabited by concrete objects laveputational
content, whereas predicates inhabited by proofs dagigal information.

4A tactic is a command to solve a goal or decompose it into Smgbals.
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coinductionon the derivation. The whole proof may be displayed in naeduction styI as follows:

[merggodd(t), everit)) ~t]

a:b:mergdodd(t), everit)) ~ a:b:t B

(computation merge

mergda:odd(t), b:everit)) ~ a:b:t

(computationodd, even

mergéodd(a:b:t), everja:bit)) ~ a:b:it

(destruction

mergéodd(s), everis)) ~ s

(introduction)

VseS. mergéodd(s), evers)) ~ s

&y
VseS. mergéodd(s), evers)) ~ s

To conclude, we observe that, as the reader may imagine, et severedemanticalIwroductiv,
but syntacticallynon-guarded functions (and proofs) that cannot be accépte@C ' because the
automated check is not sophisticated enough. Particuiant & put in fact by the community into the
goal of extending the expressive power of guarded coremuidic,[ 16/ 5]. At the moment, we can say
that CE®?'" has made a lot of progress, but there are still problematieis on the carpet.

3 The Unlimited Register Machine

The Unlimited Register Machine (URM) is a mathematical i@dion of a computer, one among the
frameworks proposed to set up a formal characterisatioheoirtuitive ideas of effective computability
and decidability. It is equivalent to the alternative agmtues,e.g Turing machines, and particulary
valued for its simplicity. We work here with the URM formullan introduced by Cutland [12], a slight
variation of a machine first conceived by Shepherdson ang)iSt[23].

Registers and instructions. The URM has ainfinite number ofregisters R, Ry, ... containing natural
numbersq,rs, ... which may be altered binstructions These are of four kinds and have the following
intended meaning (— Rrepresents the loading of the natural vatue the registeR):

Z(i) £ Zero : 0= R

S(i) £ Successor :ri+1—R

T(@i,j) = Transfer :r—R;

J(i,j,k) = Jump . ifri=r; then proceed from thith instruction

else proceed from the next instruction

Programs and computations. A programfor the URM is a finite, non-empty sequence of instructions.
When provided with a program and a(ninitial) configuration (i.e. afinite, non-empty sequence of
natural numbers,,ra,....rm in the registerd?l,Rz,...,Rmﬂ the URM performs a&omputation this
means starting from the first instructionfrand obeying the instructions sequencially (unless a Jump is
encountered), thus altering at any step the content of tfistees as prescribed by the instructions.

5As usual, local hypotheses are indexed with the rules thedlischarged by.

5productivity is the power of a function call to produce dathich is undecidable.

"Despite the number of the registers being infinite, any gnod? is finite, so there exists a maximal register indexp(P),
depending orP, such thaRy, is affected by the instructions IR Hencerq,r5,...,rmis equivalent taq,ro,...,rm,0,0,...
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The computatiorstops or convergesif and only if there is no next instruction; when this is ttese,
the number stored inRy in thefinal configuration is regarded as the output of the computatiod tlais
is writtenP(rq,r2,...,rm) . r. On the other hand, due to the looping back via the Jump ictgtry there
are computations thatever stopor diverge which is writtenP(rq,rz,...,rm) 1.

Formalization in CC 2 The encoding of the basic URM structures in€&"is straightforward,
because both configurations and programs are simply firmtegmpty sequences of components, which
we formalize by means of inductive datatypes [heepresents the natural numbers):

Loc : i,j € N*=N-{0} register index
vVal : r € N register content
Cgn : o = (1r)clm list-configuration
PC : kh € N program counter
Inst @ | e {zZ(i), S(i), T(,j), I, j,k)} instruction

Pgm : UV = (1l )Eln program

An alternative encoding of configurations can be giveniniimite sequences,e. coinductive datatypes:

Cgn. : 0w = (1—r)' €l stream-configuration

Adequacy (I). We start to address now the faithfulness of our encoding @fURM, by comparing
Cutland’s formulation and our formalization in €@, First, we observe that the syntax of our in-
structions (and therefore of programs) coincide with Gutle one. Then, two technical points have to
be considered: about the convergence of computations,lamd the encoding of configurations.

The “natural” way for the progratd =lI4, I, ..., I, to stop is that the program counter is set eventually
to n+1; though, a Jump instruction could set it to an index gret@nn+1. Cutland actually confines
his attention to the programs that invariably stop becaseéxt instruction should g, ;. We adopt
a similar convention here, with the difference that we useitidex O in place oh+1: these kinds of
programs, the sole we will be considering from now on, ard gabein standard form

Definition 3.1 (Standard form)
A program U=(1+1,)'€[-" is in standard fornif, for every Ji, j,k)cU, k<n holds.

As far as the formalization of configurations is concerneid,apparent that our stream-configurations
(i.e. the datatyp€gn,) correspond to infinite sequences of registers in the aldifiRM.

By working on paper on the one hand, Cutland is naturally allowed to define carditipns as finite,
starting segments of such infinite sequences of registersict, by inspecting a given prograi) one
can pick outp(P), the maximal register index affected by the instructionB.irin this way the working
space available to the computation unBemnay be restricted to the configurationra,...,r,p).

On the other hand, workinfprmally within CC{?'"d requires extra care. First we observe that our
list-configurationsi(e. the datatyp€gn) correspond to the above Cutland configurations, ..., r(p).
Nevertheless, list-configurations bring a drawback: if waats to reason formally on them, it is required
to consider only programs that respect the working spacerttake availab® That is, programs and
list-configurations can be soundly coupled just if the paogs contain “good” pointers.é. indexes) to
the configurations themselves, a constraint that can becdies a kind o€ompatibilityconcept.

8In a sense, this means to provide in advance with the maxiegiter indexp(U), given a progranty.
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Definition 3.2 (Compatibility) A program U and a list-configuration=(1—r, )€™ are compatible
(o EV)ifU isin standard form and, for every(®), S(i), T(i, j), J(i, j, k)€U, i, je[1..m] holds.

4 Abstract computation

In this section we bootstrap the semantics of the URM, byraitey in a modular way the formalization
introduced so far; note that, from now on, we will use the taotogy “configuration” to refer to the
encoding in C&9'"jtself (i.e. either the finite-list datatyp&gnor the infinite-stream datatyfiegn.).

Itis apparent that the conceptadnvergencef computations can be relativisedr.t. configurations:
there are actually programs that always stop and prograaistver stop (whatever configuration is
coupled to them) and programs that either converge or divdgpending on the initial configuration.
Clearly, the divergence is caused by the presendefiiite loopsin the progress of computation: to
deal formally with the execution of programs we have then amage an infinite-state system, a scenario
which may benefit from the use of tleeinductionas a specification and proof principle.

In this section we focus just on a restricted, basic notionashputation: in fact, from the point of
view of the termination, the only essential instructiorhisium pinstruction, which has the capability to
separateconverging computations from diverging ones. Hence weiden$ere programs that contain
only Jump instructionsi,e. abstractprograms; this preliminary investigation allows us to fean the
object system from a cleaner perspective, to be exploitédeirfiollowing.

Noticeably, it is not possible to cope with the semantics BMUprograms by using a uniqupp-
tentially coinductive computation concept (see Sedfibn 2): a fdidrficoding has actually to reflect the
separation between converging and diverging computatithmesugh two different judgments. There-
fore, using in this casénite (i.e. list) configurations, the semantics of abstract URM prowa&an be
described by thénductive cp and thecoinductive cp. predicates, whose arity Bgmx Cgnx PC.

Definition 4.1 (Abstract evaluation) LetA(1—,) €M anda=(1+r,)'€2M be an abstract program
and a configuration such that |= A, and let he [1..n] and h=J(i, j,k). Then, cp, is defined by the
first four rules, interpreted inductively, and gpby the last two rules, interpreted coinductively:

h=n I’i#l’j k=0 Fi=r
(e — ()
cpj+(A,0,h) cpj+ (A 0,h)
cpj+(A,0,h+1) h<n rir; cpi+ (A 0.K) kA0 1=t
(fr)+ (tr)+
ij+(A,U,h) ij+(A7G7h)
CPjo(A,0,h+1) h<n  rir| CPjw(A, 0,K) k£O ri=r;
(f)a (1)
CPjw(A, 0, ) CPj»(A, 0, h)

At the moment, our goal is to capture just the progress ofctivdrol flows with the computation
that may proceed from a generic instruction of a program. cipally, the intended meaning of the
judgmentscpj- (A, 0, h) andcpj. (A, g,h) is that the computation under the abstract progfawith the
configurationo and by starting from théth instruction ofA, convergesanddiverges respectively.

More in detail, the coinductive predicate asserts that tmeputation loops: that is, by starting from
the instructionly, there exists an instructidg which can be reached froig and such that, afterwards,
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the control flow comes again & after a non-zero, finite number of steps. Hence, the divemén
grasped via the predicatg., by the coinduction proof principle motto (“and so on foréyer

We remark that, since URM programs are not structured, we kaembed in the encoding some
other “structuration” criterium; in fact, the design of theedicates has been directly inspired byien-
ber of evaluation stepsplicit amount. Thus we have defined two atomic rulesdpy, (the evaluation
stops in one step), when either the current one is the lasuat®n and the Jump condition is false, or
the current Jump condition is true and the instruction teljgmp out of the program. The extra rules are
recursive, and address how an evaluation step is carriedithih a converging computation (predicate
cpj+) and a diverging one (predicat®;.), again inspecting by cases the Jump condition.

Another important choice to be pointed out is that we haveetemtithe evaluation from a particular
perspectivei.e. for using the judgments, according@oq's top-down proof practice, texecutespecific
programs. This “algorithmic” approach is motivated by thetfthat we are interested in experimenting
the certification of concrete programs; this is a prelimyretep that pinpoints further investigations, such
as the development of the metatheory of the URM or the addhissees addressed by Leroy and Grall
[22]. We are conscious that these more ambitious tasks cegldre the introduction of new versions of
the evaluation concept, to be related to the ones we haveafiaed up to date.

We notice, finally, that a fragment of the encoding of the eatibn judgments, which is common to
all the rules, has not been displayed in the rules themsabutdas been collected within the hypothe-
ses of the Definitio 411: such a part of the formalization tuasope with the compatibility between
programs and finite configurations, an overhead that we hiagassed in the previous section.

In the end, using our machinery we can manage terminatiordaedgence of computations under
abstract URM programs parametericaliy.t. non-mutable configurations, as follows.

Definition 4.2 (Converging and diverging abstract evaluation) Let A antle an abstract program and
a configuration such thatr = A. The computation under A with convergesand divergeswhen:

stop(A,0) £ cpj+(A0,1)
loop;(A,0) £ cpjw(A 0,1)

As an example, let us consider the abstract progénl—J(1,2,2), 2—J(1,2,2)). We can prove
that the computation und@& with the configurationro=(1—0, 2—1) converges, while it diverges with
T2(1—0, 2—0); both the proofs are immediate, the second one is by coirmict

ri=0+£1=r, 2#0 r=0=r2 [cpjx(B,T1,2)]1)
— (), (tr)e(1)
ri=0#1=r, cp;+(B,0,2) 240 r;=0=r, CPj»(B,T,2)
(fr)s (t)eo
ij+(Bvavl) ij°°(87T>l)

A more sensible approach would allow to managsable configurations, such gs=(1—m, 2—n).
In that case, the Definitidn 4.2 should be more involved, lojuiting a premise teonstrainthe content
of the configuration at hand. So doing, one could prove moneigd assertions, such agy (m=£n) =
cpj+(B,u,1) and(m=n) = cpj»(B, 4,1). Though, we prefer to postpone such versions of convergence
and divergence to the next section, where we will addresfuthgRM instruction suite.

9As discussed in Sectidd 2, the proofs are displayed in fafeduction style and have to be read from the bottom.
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5 Full computation

We extend now our formalism to deal with the full URM, by adogtinfinite (i.e. stream) configurations,
because these allow to dispose of the compatibility betypeegrams and configurations themselves (as
argued in Sectioris 3 andl 4). Note that the results we get dep@mdent from the particular encoding of
configurations (in fact, at the end of this section we wilatelformally finite and infinite configurations
to each other, by addressing the adequacy of the whole faatiah).

Actually, the computation under URM programs is capturethieymore involved inductive predicate
cp., with arity Pgmx Cgn, x PC x Cgnh,, and the coinductive predicatg,., with arity Pgmx Cgn, x
PC, which describdoththe control flowand its effect on configurations.

Definition 5.1 (Evaluation) Let U=(1—,)'€" and g,,=(1—r, )€l be a program and a configura-
tion, and let he [1..n]. We assume thag+J(i, j, k) in the Jump rules (those labelldd—)), In=Z(i) in
the Zero rules,=5(i) in the Successor rules, angHT (i, j) in the Transfer rules.

Then, cp is defined by the following rules, interpreted inductively:

h=n r#r; cp;(U,00,0+1,17,) h<n ri#r;
(if+ (Jfr)+
Cer(UvO-COvhvo-w) Cer(U?O-OO?h?Tw)
k:O ri:rj Cp+(U,Um,k7Tm) k#o ri:rj
(it-h)+ (jt-r)+
cp; (U, 0w, h, 0w) cp; (U, 0w, h, 1)
h=n Tew=2r(0,Ii) cps(U,04,,h+1,1.) h<n 0,=2zr(0w,i)
(z1)+ (z1)+
cp; (U, 0w, h, Te) cp; (U, 0w, h, Te)
h=n T,=S00x,i) cpy(U,0,,hH1,7) h<n 0,=S00,i)
(s1)+ (s1)+
Cp+(U>O-°°>h>T°°) Cp+(Uaaw7h7T°°)
h=n Te=mV0w,i,]) cp.(U,0,,h+1,17,) h<n 0,=mV0,i,]|)
th+ (tr)+
cp; (U, 0w, h, Te) cp; (U, 0w, h, Te)
And cp, is defined by the following rules (a superset of those fqiJ; pnterpreted coinductively:
CPo(U,0x,h+1) h<n ri#r; CPo(U,0x,K) k#0 ri=r;
(ifNew (JtNe
CPw(U, 0w, h) CPw(U, 0w, h)
CPw(U, T, h+1) h<n  Te=2r(0w,i) CPw(U, T, h+1) h<n Te=SU0w,i)
(Z1)oo (ST)eo
CPw(U, 0w, h) Cpw(U, 0w, h)

CPo(U, T, h+1) h<n  Te=MV0,i,])

(tr)e
CPx(U, 0w, h)

The corecursiviéd functions zrscmv: Cgne x NT(xN™) — Cgn, alter the configurations, as pre-

10Corecursion is defined in Sectibh 2. Note that these funstiesuld berecursiveworking with finite configurations.



A. Ciaffaglione 57

scribed by the instructions Zero, Successor and Trandfiergefinition of zr is e.g. as foIIo@s

21(0w,i) £ matchd, With r: T, = match =1 With0 = 0: T, | N+1 =1 : 21 (Te,i—1)

The intended meaning of the judgmegt, (U, 0., h, T,) is that the computation under the program
U with the configuratioro,, and by starting from thhth istruction ofU, stops transformingg,, into Te.

On the other hand, the intended meaningpf(U, 0,,h) is the same aspj., even if the config-
urations may be updated, in the case: the computation uhdgsrogramJ with the configurationoe,
and by starting from théth istruction,loops That is, there exists an instructitgwhich can be reached
from I and such that, afterwards, the control flow comes agalp @fter a non-zero, finite number of
steps. Nevertheless, the usecqk, is subtler than that ofpj.: the coinductive hypothesis (“and so on
forever”) may be actually applied, to grasp the divergemreyidedthe configuration at hand satisfies
aninvariant (whose nature will be clarified below). Coherently with sachintuition, afinal configura-
tion (corresponding to the fourth parameter of the indecpivedicateep, ) cannotexist forcp., simply
because the configurations may be updated “ad infinitum”drctiurse of a diverging computation!

Termination and divergence are now fully significant, andvatged parameterically as follows.

Definition 5.2 (Converging and diverging evaluation) Let U aod be a program and a configuration,
and let.7 (0.,U), .#(0-,U ) be decidable constraints about the content of the registers,, depending
on U. Then, the computation under U with convergesand divergeswhen, respectively:

stopU,0.) = e, 3.7 (0w,U). 7 (0w,U) = cpy (U, Ox, 1, Te)
loop(U,0.) 2 35(0w,U). I (0x,U) = Cpo(U, 0x,1)

As foreseen by the above comments abrut andcp., the management of convergence and diver-
gence are fairly different between each other, when the garaiions can be updated by computations.

Converging computations under with initial 0., are actually accommodated in the intuitive way:
the halting is described by the program counter, which isieadly set to 0; moreover, the incremental
modification ofo., is reported in the finat,. The premise7 (0.,U) plays the role of dermination
condition, which, if needed, provides with the extra patrdf carrying out proofs by induction. In fact,
computations may converge essentially in two ways: with thout the presence dinite cycles In
the latter case, the constraint just “guides” the contral/ fio the end of the program; in the presence of
cycles, it is exploited to pick out a parameter on which tsoseby induction. Therefore, in ological
setting, program-driven termination constraints maksifda formal proofs about the convergence and
the output of individual programs.r.t. parameter configurations. In other words, such conditidlogra
to make formal the informal proofs by evidence that one mayréigout by inspecting the programs.

Conversely, the modification of the starting configuratmnwithin diverging computations under
U does not produce a final configuration, becamigés updated ad infinitum. Though, the modification
of 0. can be observeih the course of the computation, and such configuration neaghlecked against
aninvariancecondition, that constrains its content. Therefore, thariance condition? (o.,U) itself,
whose shape depends againlbrbecomes the “guard” to ensure the non-termin&fion

Concerning the termination and invariance constraints;estrict to universally quantified formulas
on natural numbers, built via the logical operators and thibraetic operations and predicates.

1\We use here the notation o to represent the configuratigf—r, 1+—sr, ) €2,
12\We remark that the whole scenario is coheremt. the concept oEomputable functiarthat we will address in Sectig 6:
there is an output, which is extracted from the final if and only if a computation stops.
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For the sake of illustrating the technical details, let ussider thgparametric(i.e. variable-content)
configurationte=(1—m, 2—n, 3—p,...) and the progranv =(1—S(1), 2—J(2,3,1)). We can then
show that the computation undérwith Li,, diverges, by choosing the invariamt p (while it converges
with the termination constraint#p). To provevm,n, p. (n=p) = cpw(V, U, 1) by structural coinduc-
tion on the derivation withirCoqg’s top-down proof environment, we assume in the proof cdnties
coinductive hypothesis, the variables and the invariduan twe execute the two instructionslbfo that
the control flow loops back to the first instruction; finally weply the coinductive hypothe@ which
demands to prove that the new configuration satisfies the@@miaconstraint as well:

[nz' pl

nip
[CPo(U, (L—mH-1, 25n, 3—p,...), )] (1)

(jtr)e
Cpwo(U, (L—=m+1, 2—n, 3—p,...),2)

(ST)oo
Cp»(U, (L—»m, 2—n, 3—p,...),1)

(introduction)

vm,n,peN. (n=p) = cpx(U, (L—»m, 2—n, 3—p,...),1)
1

vm,n, peN. (n=p) = cpx(U, (1—>m, 2—n, 3—p,...),1)

Adequacy (ll). We complete now the discussion about the faithfulness oénoodingw.r.t. Cutland’s
URM [12], undertaken in Sectidd 3: the issues we have to addarmally are the relationship between
finite and infinite configurations, and the semantics giveiéncurrent and the previous section.

As far as the configurations are concerned, we first definenthgsionandrestriction concepts.

Definition 5.3 (Configuration inclusion/restriction) Let U be a program=(1—s,)' <™ a finite con-
figuration andte,=(1—t,)'€/*I an infinite one. Therinclusionand restrictionare defined as follows:

0C T (Vie[l.m]. t;=s/) A (VI>m. t,=0)
)

Too‘U

Concerning the semantics, let us assume (without dispayia rules) to have introduced a second
definition fot both the predicatesp, andcp., to cope withfinite configurations and for which we use
an overloaded notation. The new rules differ from Definiftofi only for the fact that the involved finite
configurations require the extra compatibility constrawth programs, analogously to Definition 4.1.

Now we can state thequivalencdetween finite and infinite configurations encodi@gmandCgn,.

Theorem 5.4 (Configurations equivalence) Letf1—1,)€[-" be a program,o and 1 finite configu-
rations, 0., and 7., infinite configurations, and letd{1..n]. Then the following properties hold:

1. cp.(U,0,h,T) ANOFU A OCOL A TCTew = CPs (U, Ow, h, Te)

2. cpo(U,0,h) AU A O0C0Ow = Cpu(U, 0w, h)
3. ¢p. (U, 00,0, Tw) = cp; (U, Oy, N, Toopy)
4. cps(U, O, ):>cpoo(U,aoo‘U,h)

13The application of the coinductive hypothesigisardedby the two constructorés )« and(jt-r)« (see also Sectidd 2).
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PrOOE (1, 3) By induction on the evaluation hypothesis. (2, 4) Bydwction on the derivation.

Even if the above Theorem establishes that working eithtr fiviite, list-like configurations or with
infinite, stream-like ones, is equivalent, we have preteup to date to handlanfinite configurations.
Our choice is motivated by two reasons: stream configursitilmnot require the overhead of managing
side-conditions to model the compatibility with prograraad it has not been yet necessary to perform
proofs by induction on the structure of configurations thelwres.

In the end, the reader can see that our machinery providessgrewith alogic for the URM, i.e.

a formal system whose potential may be exploited to provegutes about the semantics of URM
programs andhe encodingtself, a direction we will comment on further in the final sen.

To consider the adequacy issue, we conjecture that our fizatian internalizes faithfully the very
initial theory developed by Cutland on papee. the part concerning the synthesis and the execution
of individual programs. By addressing the task formallg sbundnessf our encoding is apparent (as
our programs coincide with Cutland’s ones, and we have eouig programs a formal logical system);
moreover, we state a limited form obmpletenessn the following sense.

Conjecture 5.5 (Adequacy) Let P be an URM program aneH(i—|;)' €[+ its faithful encoding. Then:

1. If P(ag,ay,...,am)| b, then there exist=(1—b, 1+—1,)' <2 and .7 ((1+—a,)' <> U) such that
T ((1—a,)' <tMU) = cpy (U, (1a) <t 1,7)

2. If P(ag,ay,...,am)T, then there exists? ((1—a,)'€*M U) such that.s ((1—a,)' <™ U) =
Cpw(U, (1—ay ) €lm 1)

PrROOFE (1) By inspection on the hypothetical evaluation (to detligetermination constraint, which
depends on the initial configuratiofi;—a;)' ™), then by induction (see also Sectldn 6). (2) By in-
spection on the hypothetical evaluation (to devise theriam8), then by structural coinduction.

To conclude, we remark that, after the introduction of they\masic computability theory, Cutland
develops “higher-order” methods, to devise new computilsietionswithouthaving to write programs.
It is immediate that addressing this kind of adequacy, attbment, is out of the scope of our approach.

6 An example: partial minus

The next step of our work is to address slightly more involeedcepts: in this section we exploit the
formalization developed so far, by tuning it to deal with thactionscomputed by the URM.

The formal notion of(partial) computable functiorarises naturally in Cutland’s presentation|[12]
after the preliminary definitions reported in Sectidn 3. N&ma programP computes a function
f: N™ — N when, for everyas,ap,...,am, bcN™?, the computatiorP(ay, a,...,an) stops and is
stored in the registeR; in the final configuration (this is writteR(ay,az, ... ,am) ] b) if and only if:

(a1,ap,... ,am)edom(f) andf(as,ap,... ,am)=Db

A relevant application supported by our machinery is to egslthecertificationof URM programs:
that is, proving that a program meets the specification iefghed for. The example we will be working
out in this section is thpartial subtraction functiorsub: N xIN — IN:

m—n if m>n
sugmn) = {T if m<n
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An algorithm to make the URM compute this function is thedaling: if mandn are loaded, respec-
tively, in Ry andRy, then try to letn reachm by performingSuccessooperations oifRy; correspondingly
incrementR3, whose content is initially set to 0, to record the numberteps performed oR,. This
algorithm devises &op in the computation, which comes to an end if and only¥n. In any case, at
any completion of the loop, the snapshot of the registergettiis the following:

Ri R R Ry
m mk k O

The algortithm can be implemented, for example, by the ¥alhg URM program:
U= (1-J(1,2,5), 2-52), 3—+5(3), 4->J(1,1,1), 5-T(3,1) )

The program, as required, is designed to increment in garallandrz and to stop just, and only
if, whenry=ry. It is then immediate to see that the computations uttenay converge or diverge
depending on the initial configuration: therefore, the iempéntation of the partial subtraction function
has to be certified in two steps, by using the predicapesandcp, defined in the previous section.

On the one hand, we prove vig., that the computation undér diverges with the configurations
(—m, 2—n,...), such tham<n (which is the “invariant”). To complete the analysis, weaddish via
cp, that the computation undér converges tan—n with the configurationgl—m, 2—n, 3—0,...),
such tham>n (this, in turn, plays the role of the “termination” constrgi

Theorem 6.1 (Partial minus) Leto=(1— o031, 207, 3—03,...) be a parameter configuration. Then,
the implementation of the partial minus function is cenrtifigy the following properties:

1. (Divergence); <02 = Cpw»(U,0,1)

2. (Convergencey; >0, = cpy (U, 0,1, (1—01—02+03, 201, 3—01—02+03,...))

PrROOFE (1.) By structural coinduction on the derivation. Assume doinductive hypothesis, then
evaluate the first four instructions so that the control floegds back to the first instruction, finally apply
the coinductive hypothesis and prove that the updated aomafign satisfies the invariant constraifit

[01<07]

01<0>+1

[Cpoo(U R (1#—)0'1, 2—0o+1, 3—03+1,.. .), 1)](1)

(jtr)e
Cp»(U,(1—01, 2—02+1, 3—03+1,...),4)

(ST)oo

Cp»(U,(1—01, 2—02+1, 3—03,...),3)

(ST)e
Cp (U, (1—~01, 2—02, 3—03,...),2)

(if e
Cp»(U,(1—01, 2—07, 3—03,...),1)
(introduction)

Vo=(1—01, 2—07, 3—03,...). 01<02 = Cp(U,0,1)

1)
Vo=(1—01, 207, 3—03,...). 01<02 = Cp(U,0,1)

l4see Sectiohl2 about the conventions for displayind“@X¥*® top-down proofs in natural deduction style.
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(2.) By induction on g-0;—05. If p=0, the evaluation of the program U reduces to obeying just the
first instruction (the Jump condition is true) and the laséphence the thesis is immediate. #gt1, the
evaluation of the first four instructions causes the corfimk to loop back to the first instruction, with
the configuration1— 01, 2—0>+1, 3—03+1,...); the thesis follows from the inductive hypothesis.

Finally, choosingos=0 implies the convergence of the computation under U witb g;—0>.

Inductive versus coinductive evaluations. Regardingpartial functions, it is apparent that the two
predicatecp, andcp., act as complementary, being the first one responsible fotréaément of the
elements in the domain of the function involved and the sé@me for all the extra computations.

About this separation between inductive gndely coinductive evaluations, we wish to remark that
it has not been possible to deal with the semantics of URMnarag by using a uniquegotentially
coinductive judgment. Actually, by restrictirlgg on abstract programs, if such a predicate was defined
through the rulegf-1)., (t:1)+, (f-r)» and(t-r). of Definition[4.1, would be too weak. Far from being
an obstacle for our goals, this fact has caused just to deuiéet of the encoding, to define bath, and
Cpw; in any case, such a solution provides with an extra proafcple, i.e. the possibility of carrying
out proofs by structural induction on the derivation of cemging computations.

Nevertheless, these considerations about the relatiphgtiween inductive, potential and pure coin-
ductive evaluation point out the need of further researébrtsf along the lines pursued by the much
more advanced work by Leroy and Grall [22] (see the nextsedtr the discussion of related work).

7 Further and related work

In this document we have given an account of an experimen€ff®" about modeling and reasoning
on the execution of converging and diverging low-level,eassly-like programs, carried out by the
Unlimited Register Machine (URM) [12]. The particular peestive which has inspired our research is
the formalization of a workbench to certify the implemeiaatof the functions computed by the URM,;
as a proof of concept, we have addressed the partial mingidaron natural numbers. The encoding
technique needed to accomplish our goal is quite plain,tdpman the use of the coinduction: in fact,
we have taken most advantage of the (co)inductive spedificaind proof principles provided by the
ccColndintuitionistic type theory and mechanized in t6eq proof assistant[17, 26].

In this final section we sketch some hints to exploit the pidéf our formalization, along two
main directions: computability and traces of execution.

Computability.  In our work we have mastered the very basic computabilitprhef the URM: essen-
tially, we are able to prove thapecificURM programs implement the functions they are designed for.
So we have coupledlagic, whose mechanization is supported@yy, to the bare URM. Nevertheless,
exploiting the machinery requires a non-trivial analysisl @ractice by the user, who has to pick out
ad-hoc propertiegérminationandinvariant conditions) to achieve the certification of URM code.

At this point, to pursue at a deeper extent the formalizatibthe computability theory, one has to
change a bit perspective, gaining a more abstract levek djeens actually two new directions, which
form the core of the computability: lifting from programs fianctions (which they implement) and
describing “higher-order” methods, to combine such fuori for obtaining new, more sophisticated
computable functions. Therefore, one should add at leastvanmeta-level, where partial functions are
first-class citizens. A possible approach towards this go#d investigate more abstract properties of
URM programs, such asquivalence This effort, in turn, would open further research lines] éends
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again, as invariance does, to the objective of capturingnigtthe outcome of the execution of programs,
but also the observable effects.

As far as we know, there is no related work about formalizimg historical models used to develop
the computability theory (and the URM, in particular). We dhis as a serious gap from the point of
view of certified mathematics, a framework where the resemciowadays intense; hence the present
document is also an effort to contribute closing this gap.

Traces of execution. Leroy and Grall[22] adopt coinduction within ¢€)'"?to capture both finite and
infinite evaluations of &all-by-valueA -calculus The motivation of that work is the attempt to describe
big-step semantics by coinduction, because big-step d@®ds more convenient than small-step to
prove the correctness of program transformations, sucbragpilation Nevertheless, big-step semantics
is traditionally defined by induction, thus allowing to debe only terminating evaluation.

Grall and Leroy prove that (only) a big-step semantics tleglasates terminating evaluation (de-
scribed by an inductive predicate) from diverging evalwatidescribed by a purely coinductive predi-
cate) corresponds exactly to finite and non-finite smaf-séeluctions. Afterwards, the authors extend
both the semantics to produce not only the outcome of an &tatu(convergence and output, or diver-
gence) but also aexecution tracein the form of a potentially infinite sequence of terms repreing the
intermediate reducts of the source program. This extensitmdamental to establish semantic preser-
vation properties for program transformation (such as dlatipn) and is very important to investigate
observational equivalence for imperative languages.

Therefore, it would be stimulating to experiment with trecé execution for the URM (for example
in the form of potential infinite sequences of configuratjadmsaddres®.g equivalence of programs.

Other work related to divergence or low-level languages. There are several contributions in the
literature exploiting the potential of coinductive defioits and proofs within C€2'"d to master the
fundamental concept of non-terminating computation. Safmthese approaches concern transition
systems|[10,13], linear temporal logic [9, 3] and processlaigs[[18, 20].

Finally, from a complementary point of view, we observe timtecent years the metatheory of
low-level machines has been studied by several authors ia mealistic settings [11, 25| 6].
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