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This paper offers a survey of RPAAL-SMC, a major extension of the real-time verification tool
UPPAAL. UpPPAAL-sMmcC allows for the efficient analysis of performance propertiesetworks of
priced timed automata under a natural stochastic semartigsarticular, UPPAAL-SMC relies on

a series of extensions of the statistical model checkingagmih generalized to handle real-time
systems and estimate undecidable problem®.prAAL-SMC comes together with a friendly user
interface that allows a user to specify complex problemsnirefficient manner as well as to get
feedback in the form of probability distributions and comgprobabilities to analyze performance
aspects of systems. The focus of the survey is on the evolafithe tool — including modeling and
specification formalisms as well as techniques applied ety with applications of the tool to case
studies.

1 Introduction

Quantitative properties of stochastic systems are usspégified in logics that allow one to compare the
measure of executions satisfying certain temporal praggewith thresholds. The model checking prob-
lem for stochastic systems with respect to such logics is@jly solved by a numerical approach [3] 14]
that iteratively computes (or approximates) the exact omeasf paths satisfying relevant sub-formulas;
the algorithms themselves depend on the class of systemg aealyzed as well as the logic used for
specifying the properties.

Another approach to solve the model checking problem srtalatethe system for finitely many
runs, and usdypothesis testintp infer whether the samples providestatistical evidence for the sat-
isfaction or violation of the specification [40]. The crux this approach is that since sample runs of
a stochastic system are drawn according to the distributedfimed by the system, they can be used to
get estimates of the probability measure on executionssé kechniques, also call&tatistical Model
Checking techniquesSMC) [26,[36] 40|, _35], can be seen as a trade-off betweengemtd formal veri-
fication. In fact, SMC is very similar to Monte Carlo used inlirstry, but it relies on a formal model of
the system. The core idea of SMC is to monitor a number of sitiauls of a system whose behaviors de-
pend on a stochastic semantic. Then, one uses the resultistics (e.g. sequential hypothesis testing
or Monte Carlo) together with the simulations to get an ovestimate of the probability that the system
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2 Statistical Model Checking for Priced Timed Automata

will behave in some manner. While the idea resembles the badassical Monte Carlo simulation, it is
based on a formal semantic of systems that allows us to reaseery complex behavioral properties
of systems (hence the terminology). This includes clabsézchability properties such as “can | reach
such a state?”, but also non trivial properties such as “gaadh this state x times in less than y units
of time?”. Of course, in contrast with an exhaustive appnoaach a simulation-based solution does not
guarantee a result with 100% confidence. However, it is ptestd bound the probability of making an
error. Simulation-based methods are known to be far lessaneand time intensive than exhaustive
ones, and are sometimes the only option[41, 27].

Statistical model checking is now widely accepted in vagicesearch areas such as software engin-
eering, in particular for industrial applications [5, 38]1or even for solving problems originating from
systems biology [17, 29]. There are several reasons fosthisess. First, SMC is very simple to under-
stand, implement, and use. Second, it does not require mxideling or specification effort, but simply
an operational model of the system, that can be simulatecla@cked against state-based properties.
Third, it allows us to verify properties [15, 116, 5] that cabive expressed in classical temporal logics.
Finally, SMC allows to approximate undecidable problem&isTatter observation is crucial. Indeed
most of emerging problems such as energy consumption aexigadble[[24, 9] and can hence only be
estimated. SMC has been applied to a wide range of probleatgties from embedded systems[15]
and systems biology [15, 16] to more industrial applicatiff].

In a series of recent works [22,11.3,121], we have investigttegbroblem of Statistical Model Check-
ing for networks of Priced Timed Automata (PTA). PTAs areddrautomata, whose clocks can evolve
with different rates, whilg being used with no restrictions in guards and invariants[21j, we have
proposed a natural stochastic semantic for such automdtighwallows to perform statistical model
checking. Our work has later been implemented imPRIAL-SMC, that is a stochastic and statistical
model checking extension of RPAAL. UPPAAL-SMC relies on a series of extensions of the statistical
model checking approach generalized to handle real-tirmes)ys and estimate undecidable problems.
UPPAAL-SMC comes together with a friendly user interface that allowser to specify complex prob-
lems in an efficient manner as well as to get feedback in the @probability distributions and compare
probabilities to analyze performance aspects of systems.

The objective of this paper is to offer a survey oPihAL-sMC. This includes modeling and spe-
cification formalism as well as techniques applied — togethth applications of the tool to case studies.

Structureof thepaper In Sectiori 2, we introduce the formalism of networks of Rtitened automata.
Section B provides an overview of some existing statisticatlel checking algorithms, while Sections
[4 and[5 introduce the GUI and give some details on the engingreAL-smC. Finally, Sectiorl b
presents a series of applications for the tool-set and @gé@tconcludes the paper.

2 Modeing Formalism

The new engine of BPAAL-SMC [22] supports the analysis of Priced Timed Automata (PTAaj are
timed automata whose clocks can evolve with different ratesferent locations. In fact, the expressive
power (up to timed bisimilarity) of NPTA equals that of geslelinear hybrid automata (LHA) [1],
rendering most problems — including that of reachabilityndecidable. We also assume PTAs are input-
enabled, deterministic (with a probability measure definedhe sets of successors), and non-zeno.

1in contrast to the usual restriction of priced timed autani@t(Z]
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PTAs communicate via broadcast channels and shared \ewmitdlgenerate Networks of Price Timed

Automata (NPTA).

Fig.[d provides an NPTA with three compone#sB, andT as
specified using the PPAAL GUI. One can easily see that the compos- Ao BO TO
ite system(A|B|T) has the transition sequence: X<=1 - y<=2 g
((Ro,Bo, To), [x=0,y = 0,C = 0]) =5 -
((A1,Bo,T1),[x=1y=1,C=4]) 52 al b! '==2
((A1,B1,To),[x=2,y=2,C=§]), . y >
demonstrating that the final locatids of T is reachable. In fact, loc- T3
ation Tz is reachable within cost 0 to 6 and within total time 0 and 2 B T

in (A|B|T) depending on when (and in which ordérandB choose to

perform the output actioral andb!. Assuming that the choice of theseFigure 1: An NPTA(AB|T).
time-delays is governed by probability distributions, sasugre on sets

of runs of NPTAs is induced, according to which quantitafiveperties such dshe probability of Tz
being reached within a total cost-bound of 4.88come well-defined.

In our early works [[2l1], we provide a natural
e stochastic semantics, where PTA components associate
t probability distributions to both the time-delays spent
J/ in a given state as well as to the transition between
4 = Cost states. In WpPAAL-sMC uniform distributions are ap-

’ Hrime plied for bounded delays and exponential distributions
- for the case where a component can remain indefinitely
in a state. In a network of PTAs the components re-
24 36 48 60 peatedly race against each other, i.e. they independ-
Time/Cost ently and stochastically decide on their own how much
to delay before outputting, with the “winner” being the
component that chooses the minimum delay. For in-
stance, in the NPTA of Fid.l 1A wins the initial race
over B with probability Q75.

As observed in[21], though the stochastic semantic of eadilriidual PTA in UPPAAL-SMC is rather
simple (but quite realistic), arbitrarily complex stoctia®ehavior can be obtained by their composition
when mixing individual distributions through message pagsThe beauty of our model is that these
distributions are naturally and automatically defined ke letwork of PTAs.

Figure 2: Cumulative probabilities fotime
andCost-bounded reachability ofFs.

The Hammer Game To illustrate the stochastic semantics further considemgtwork of two priced
timed automata in Fid.]3 modeling a competition between weeplayers Axel and Alex both having
to hammer three nails down. As can be seen by the represeatinglocations the time (-interval) and
rate of energy-consumption required for hammering a ngkdds on the player and the nail-number.
As expected Axel is initially quite fast and uses a lot of gydout becomes slow towards the last nail,
somewhat in contrast to Alex. To make it an interesting cditipe, there is onlyonehammer illustrated
by repeated competitions between the two players irR#aely-locations, where the slowest player has
to wait in theIdle-location until the faster player has finished hammeringriie nail. Interestingly,
despite the somewhat different strategy applied, the la@stworst-case completion times are identical
for Axel and Alex: 59 seconds and 150 seconds. So, there ifffieoethce between the two players and
their strategy, or is there?
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Idlel Idle3

Work1 Work2 Work3 Done
done! done! done!
x=0_ & x>=6 x=0_ & x>=6 x=0_ & x>=5 x=0 x>=3 x=0
a) Axel x<=11 && D'==4 x<=12 x<=13 && D'==3 x<=15 && D'==2
Work1 , Work2 , Work3 | Done
P done done done
x=0_ & x>=4 x=0_ & x>=5 x=0 x>=7 x=0
x<=15 x<=13 && C'==2 x<=12 && C'==3 x<=10 && C'==4
ex

Figure 3: 3-Nail Hammer Game between Axel and Alex.

Assume now that a third person wants to bet on who is the mkely iinner — Axel or Alex — given
a refined semantics, where the time-delay before performmgutput is chosen stochastically (e.g. by
drawing from a uniform distribution) and independently [ack player (component).

Under such a refined semantics there is a significant differ&etween the two players (Axel and

Alex) in the Hammer Game. In Figl 4a) the probability digitibns for either of the two players winning
before a certain time is given. Though it is clear that Axed hdnigher probability of winning than Alex

(59% versus 41%) given unbounded time, declaring the cdtigrea draw if it has not finished before

50 seconds actually makes Alex the more likely winner. Sini Fig.[4b) illustrates the probability

of either of the two players winning given an upper bound oargyn With an unlimited amount of

energy, clearly Axel is the most likely winner, whereas ting the consumption of energy to maximum
52 “energy-units” gives Alex an advantage.
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Figure 4: Time- and Cost-dependent Probability of winnimg Hammer Game

Extended Input Language UPPAAL-SMC takes as input NPTAs as described above. Additionally,
there is support for other features of therAAL model checker’s input language such as integer vari-
ables, data structures and user-defined functions, whegtlgrease modeling. RPAAL-SMC allows the
user to specify an arbitrary (integer) rate for the clockaoylocation. In addition, the automata support
branching edges where weights can be added to give a digiribon discrete transitions. It is important
to note that rates and weights may be general expressionddapand on the states and not just simple
constants.

To illustrate the extended input language, we consideliragrae example. This example is available
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in the distributed version of EPAAL-SMC. A number of trains are approaching a bridge on which there
is only one track. To avoid collisions, a controller stops thains. It restarts them when possible to
make sure that trains will eventually cross the bridge. &lae timing constraints for stopping the trains
modeling the fact that it is not possible to stop trains infya The interesting point w.r.t. SMC is to
define the arrival rates of these trains. Figure 5(a) showddmmplate for a train. The locatigafe
has no invariant and defines the rate of the exponentiaildititvn for delays. Trains delay according
to this distribution and then approach and synchronize wsibr [1]! with the gate controller. Here
we define the rationa%ﬁ—ﬁd whereid is the identifier of the train ant the number of trains. Rates are
given by expressions that can depend on the current statasswith higherid arrive faster. Taking
transitions from locations with invariants is given by afanin distribution. This happens ifippr,
Cross, andStart, e.g., it takes some time picked uniformly between 3 and % timits to cross the
bridge. Figuré b(b) shows the gate controller that keepsk tod the trains with an internal queue data-
structure (not shown here). It uses functions to queuesi@ihen a train is approaching while the bridge
is occupied ir0cc) or dequeue them when possible (when the bridge is free and sain is queued).

Free

- © \
x>=3
Safe leavelid]! Cross len==0
(1 +id) : N*N X<=5
appr(id]! len >0 () e == front()
x=0 leavele]?
_ goffront()]!
x>=7 - dequeue()
_ apprle]?
x=0
enqueue(e)
Appr Start N ) J
x<=20 x<= 15 K Occ
=10 )
:?op[i(ﬂ? gi)[\d]? appr[e]? stop([tail()]!
x=0 enqueue(e)
Stoppin
Stop C pping
(a) (b)

Figure 5: Template of a Train (a) and the Gate Controller (b).

Floating Point Arithmetic For modeling certain systems, e.g., biological systentiegar arithmetic
shows its precision limits very quickly. The current engimplements simple arithmetic operations on
clocks as floating point variables. This allows variouskisidn particular the tool can compute nontrivial
functions using small step integration. For example, Fedi(a) shows a timed automaton with floating
point arithmetic. The clocksin_t andcos_t are used to computgin(t) andcogt) using simple facts

sin_t=sin_t + cos_t*dt, 0.9 0.9
cos_t=cos_t - sin_t*dt,
dt=0 0.4 / 0.4
©-0.1 Fsint g-01 )
TR =) ]
e $06 Ecost € g6 S
- 1000 \/
sin_t'==0 && -1 -1l
cos t==0 0 3.0 6.0 9.0 12.0 -1.00 -0.01 0.98
— time cos(t)
(a) (b) (c)

Figure 6: How to use clock arithmetic to integrate complaxctions.
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assin(t + dt) ~ sin(t) + sin(t)dt for small steps ofit — 0, whereassin(t) = cogt) andsin(0) = 0,
and similarly forcogt). The interesting trick on the model is the high exponent# (1000) that tells
the engine to take small (random) time steps and record tfaido in clockdt. The other clocks are
stopped and updated on transition. The value evolution Wabkessin_t andcos_t in terms of time
are plotted in Figurgl6(b). Figuré 6(c) shoain_t values with correspondingos_t which form almost
perfect circle. These plots are rendered using value namitdeatures described in Sectioh 4.

3 Propertiesand Queries

For specifying properties of NPTAs, we use weighted tenlparaperties over runs expressed in the
logic WMTL [10] (Weighted Metric Temporal Logicdefined by the grammap ::= ap|—¢ |$1 A
$2|0¢ | p1U% 42, whereapis an atomic propositiond is a natural number andis a clock. Here, the
logical operators are interpreted as usual, @rid a next state operator. An WMTLformula ¢1U% ;92
is satisfied by a run i is satisfied on the run untj) is satisfied, and this will happen before the value
of the clockx increases with more thath For an NPTAM we definePy () to be the probability that a
random run oM satisfiesy.

The problem of checkin®w () > p (p € [0,1]) is unfortunately undecidable in geneEaI For
the sub-logic of cost-bounded reachability problefRg Ox<c®) > p, where@ is a state-predicate is
a clock andC is bound, we approximate the answer using simulation-basgatithms known under
the name of statistical model checking algorithms. We byrieftap statistical algorithms permitting to
answer the following three types of questions:

1. Hypothesis Testinds the probabilityPy (Ox<c®) for a given NPTAM greater or equal to a certain
thresholdp € [0,1] ?

2. Probability evaluationtWhat is the probability’y (Ox<c @) for a given NPTAM?
3. Probability comparisonis the probabilityPy (Ox<c ) greater than the probabilit§v (Oy<p @] ?

From a conceptual point of view solving the above questi@isguSMC is simple. First, each run
of the system is encoded as a Bernoulli random variable shatié if the run satisfies the property and
false otherwise. Then a statistical algorithm groups theeolations to answer the three questions. For
the qualitative questions (1 and 3), we shall use sequéant@thesis testing, while for the quantitative
guestion (2) we will use an estimation algorithm that rederttie classical Monte Carlo simulation. The
two solutions are detailed hereafter.

Hypothesis Testing This approach reduces the qualitative question to testiadhypothesid : p =
Pm(Ox<c®) > 6 againsK : p < 8. To bound the probability of making errors, we use strengtiameters

a andf and we test the hypothedity : p> pp andH; : p < py with pg=06+ & andpr = 8 — &;. The
interval pg — p1 defines an indifference region, apg and p; are used as thresholds in the algorithm.
The parameten is the probability of acceptingly whenH; holds (false positives) and the parameter
B is the probability of acceptingl, whenHg holds (false negatives). The above test can be solved by
using Wald'ssequential hypothesis testif89]. This test computes a proportiolmmong those runs that
satisfy the property. With probability 1, the value of theportion will eventually cross lq@/(1— a)
orlog((1—B)/a) and one of the two hypothesis will be selected. IPPAdAL-SMC we use the following
query:Pr [bound (@) >=pg, wherebounddefines how to bound the runs. The three ways to bound them

2Exceptions being PTA with 0 or 1 clocks.
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are 1) implicitly by time by specifyingi=M (where M is a positive integer), 2) explicitly by cost with
x<=M wherex is a specific clock, or 3) by number of discrete steps withM. In the case of hypothesis
testingpg is the probability to test for. The formulpis either<> qor [1 gwhereqis a state predicate.

Probability Estimation This algorithm [[26] computes the number of runs needed ieram produce
an approximation intervdlp — €, p+ €] for p = Pr(y) with a confidence *+ a. The values of anda
are chosen by the user and the number of runs relies on tha@hetoeffding bound. In BPAAL-SMC
we use the following quen®r [bound (¢)

Probability Comparison This algorithm, which is detailed in [21], exploits an exted Wald testing.
In UPPAAL-SMC, we use the following quengr [bound] (@) >= Pr [bound] (g).

In addition to those three classical testspFdAL-SMC also supports the evaluation of expected
values of min or max of an expression that evaluates to a aockn integer value. The syntax is
as follows: E[bound N] (min:expn or E[bound N] (max:expr), whereboundis as explained in this
section,N gives the number of runs explicitly, amckpris the expression to evaluate. For this property,
no confidence is given (yet).

Full WMTL< Regarding implementation, the reader shall observe thiit diothe above statistical
algorithms are trivially implementable. To support the fagic of WMTL <is slightly more complex

as our simulation engine needs to rely on monitors for sugttldn [10], we proposed an extension of
UPPAAL-sMC that can handle arbitrary formulas of WMTL Given a propertyp, our implementation
first constructs deterministic under- and over-approxiomamonitoring PTAs forg. Then it puts these
monitors in parallel with a given mod&l, and applies SMC-based algorithms to bound the probability
that¢ is satisfied orM.

4 Graphical User Interface

Besides short 'yes’ or 'no’ answers and probability esti@satUPPAAL-SMC verifier also provides a
few statistical measures in terms of time (or cost), inalgdirequency histogram, average time (or
cost), probability density distribution, cumulative padiility distribution (the last two with confidence
intervals, e.g. using the Clopper-Pearson method [19]).

These statistical data can also be superposed onto a sioglf®pcomparison purposes using the
plot composer tool. Figulfid 7 shows the superposed prohadbifitributions of trains 0, 3 and 5 crossing
from our train-gate example. On the left side of the plot cosgy window the user can select a particular
data to be added to the plot and on the right side the user eghesuperposed plot and can also change
some details such as labels, shapes and colors.

Monitoring Expressions UPPAAL-SMC now allows the user to visualize the values of expressions
(evaluating to integers or clocks) along runs. This giveggint to the user on the behavior of the system
so that more interesting properties can be asked to the rebeeker. To demonstrate this on our previ-
ous train-gate example, we can monitor wiieain (0) andTrain (5) are crossing as well as the length
of the queue. The query isimulate 1 [<=300]{Train(0).Cross,Train(5).Cross,Gate.len}.
This gives us the plot of Figufée 8. Interestingtyain (5) crosses more often (since it has a higher arrival
rate). Secondly, it seems unlikely that the gate length sllmow 3 after some time (say 20), which is
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[ BloE Gompaser, —oix
S o s ald
Epr[ <= 200](<> Train(2).Cross) —{k|Data set:{Train(3).Cross ||
Prl == 200](< = Train(3).Cross) 3 — : T .
CIFeb 1, 2012 11:36:06 AM Draw: Color: [H Shape: | |viStroke: [ | w | Area: |Polygon ‘v‘
o= 3 Probahility Density Distributiol e
o il Erotaitty ensineLannden ol Probability Distribution
¢ [ Probability Distribution
ﬁ in(3) Cross| iy I
rain(3). |
ey e 0.018| [
[ averags S _— |
o= [ Probability Confidence Interva o I' M
o [ Cumulative Frobability Distriby_| £ o.olzj | r [ Train() Cross
o [ Cumulative Probability Confid S0.0058 I il [ Train(3).Cross
o [ Fraquency Histogram 50.006 ! iy [ Train(s).Cross
{1 Pr[ == 200](<> Train(4).Cross) i
gﬁ Fab 1, 2012 11:36:06 AM e:a03 R
Pr[ <= 200](<> Train(5).Cross) = 0 o
i Bt 10 47 g4 121 158 195
|[ 4 | 1l | [ ] run curation in time

Figure 7: Snapshot of the plot composer displaying threbaiitity distributions.

not an obvious property from the model. We can confirm this ¢kirey Pr [<=300] (<> Gate.len <
3 and t > 20) and adding a clock. The probability is in0.102 0.123.

Simulations
6.0
4.5
©3.0 2 Train[0].Cross
= E=3 Train[5].Cross
Z15 E Gate.len
o i i i
0 50 100 150 200 250 300
time

Figure 8: Visualizing the gate length and whBrain (0) andTrain(5) cross on one random run.

As a second example to illustrate this feature, we conshdentodeling of chemical reactions. Fig-
ure[9(a) andI9(b) show two symmetric timed automata that iitbdeconcentrations of reactardsand
b (here as integers). The exponential rate for taking thesitian is given by the concentration afand
b. Figure[9(c) shows the evolution of the system when it igetiwitha=99 andb=1: a is consumed to
produceb and vice-versa, and the concentrations oscillate.

The simulations are obtained by queryisimulate 1 [<=10]{a,b}. Figure[9(c) is showing one
evolution ofa andb over time. The tool can also plot clouds of trajectories,clihis useful to identify
patterns in the behavior, as shown in figure 9(d).

It is important to notice that generating such curves is gotrigial as it seems. In fact, on such
models, if the exponential rates are higher, then the timgssare much smaller, which generates a lot
of points, up to consuming several GB of memory. Drawing suicks is not practical. The tool would
not work due to out-of-memory problems or in the best casktake around 30s to transfer the data and
several seconds for every redraw. To solve this the engipbeapan on-the-fly filtering of the points
based on the principle that if two points are too close to eglobr to be distinguished on the screen, then
they are considered to be the same. A resolution parameatee@to define the maximal resolution of
the plot and eliminates the memory and speed problems ctehpl{eown to almost not measurable).

This plot in Figure€_B(b) is obtained by askisdmulate 1 [<=12]{sin_t,cos_t} to the model-
checker. Interestingly, EPAAL-SMC can generate a run bounded by any clock so we can also plot
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a>1 && b<limit 96
a——, b++ a4
72
a

@) . jz AW,«W\MWMWA.WMA«AWWW.MM M.

§ 36 \\/‘ Co
b>1 && a<limit 24
b——, a++ 12
0

b 0 2.0 4.0 6.0 8.0 10.0
time

(b) (©)

Figure 9: Evolution of the concentrations of two reactangdb.

simulate 1 [cos_t<=1]{sin_t} and obtain a circle as shown in Figlie 6(c).

5 Engine

The actual technigues to achieve the current performantieedbol were never exposed before. In this
section, we present a few key optimizations to implemenatgerithms presented and new features that
were not available in earlier versions oPBAAL-SMC.

Distributed SMC The problem in distributing the implementation of the satia SMC algorithm

is that abias may be introduced. The reason is that sequential testimggsreh collecting outcomes of
the generated runs on-the-fly. If some computation coresrgén some accepting runs faster, which
is possible if rejecting runs happen to be longer or simplyerexpensive to compute, then the result
will be biased. The solution of this problem is to force ak tbores to generate the same amount of
simulations. The paper [40] proposes a method to ensurdyhéplitting the simulations into batches
of the same size, and this method has been generalized afememged in WrPAAL-sMC [13]. The
distributed implementation gives a linear speed-up in timalver of cores used.

Detection of States When choosing the delays, the engine does not know if itskilh the state that
should be observed by the query or not. This problem is ptegeen picking delays to take transitions as
well. For example, the query could ke A.critical and x >= 2 and x <= 3 wherex is a clock.
The engine should not delay 4 time units from a state wketebecause the first possible transition is
enabled at this point. Special care is taken to make surdhitbdbrmula is part of the nexnteresting
points that are computed when choosing the delays. Now cdneeguestion of how to detect those
interesting points in both the formula and the guards.

The technique we use follows the decorator pattern wherevalei@e guards (for detecting which
transitions will be enabled in the future) and formulas ia tluery to keep track of the lower bounds.
We wrap a state inside a decorator state that keeps track abtistraints on-the-fly, only remembering
the bounds that we need. The point of the technique here oid aymbolicstates that would require
zones typically implemented with different bound matrices

Early Termination The engine checks for query on-the-fly on every generated thia query is
satisfied then the computation of the run is stopped befaeaithes the specified bound. In addition,
in order to give the user a way to stop runs earlier, the englipports amuntil property:p U q can be
queried instead of> q and cut the runs as soon@astops to hold.
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Dependenciesand Reuse of Choice  When a process takes an action, it may not affect other pseses
which means that from a stochastic point-of-view, pickingesv delay from scratch aeusingthe old
(random) choice is equivalent. The engine exploits thigpmhdence: it remembers the previous delays
chosen by the processes and invalidates them when depdralesitions are taken. A process has its
delay invalidated if there is a dependency with anothersitemm being taken, which happens in case of
synchronization or a dependency through a clock rate, ismirguard, or update. A static analysis is
made at the granularity dfow transitions affect processes

The result is that whenever a procegsedsto pick a delay, it does so. Whenever a process takes a
transition, the processes that may be affected by it muktgicew delay at the next step. Otherwise,

processeseusetheir choices from the previous step in the simuldiion
Checking the queryPr[<=300] (<> Train(0).Cross and (forall (i:id t) i!=0 imply

Train(i) .Stop))

to evaluate the

probability ofTrain (0) crossing while | Trains S 10 20 40
ults in Table1 for different numbers of | Time™ 3.9s 17.3s| 41.1s| 98.1s
trains. The results are obtained with the Time" 3.5s 14.8s| 33.2s| 74.8s
parameters = 0.005 and the probabil- | Gain 10.2% 14.4%| 19.2%| 23.8%

|t>_/ rgsults agree W'_th or without "eUSCraple 1: Probability and time results without (-) and with) (+
within €. The experiments are made on

acore i7 at 2.66GHz. This optimization

is designed to improve on systems with large number of compisn which is shown by the increasing
improvement relative to verifications without reuse.

6 Case-Studies

In this section we evaluate the applicability of the devebbpechniques on practical case studies.

Robot Control In paper [10] we considered a case — explored_in [4] — of a rabmting on a two-
dimensional grid. Each field of the grid is eithesrmal, on fire, cold asice or it is a wall which
cannot be passed. Also, there igaal field that the robot must reach. The robot is moving in a random
fashion i.e. it stays in a field for some time, and then movesneighboring field at random (if it is not

a wall).

We are interested in the probability that the robot reactses i
goal location without staying on consecutive fire fields faren
than one time unit and on consecutive ice fields for more thaf™®

0.36

two time units. This property is captured by the WMTformula ggi; I = [
¢ = (¢1 A ¢2)UL pgoal, whereT is a special clock that growsg 012 %Eg;sg

with rate 1 and is never reset, and: 8006

Ol e
0.5 3.6 6.7
run duration in time

Figure 10: Cumulative Probability

¢p1=ice = OL,(fireVnormalV goal) 9.8

¢2=fire = QL;(iceVnormalV goal)

We applied WrPAAL-sMC to compute the probability of the robot reaching the gpaktaying too
long in the fire or too long on the ice. Figurel 10 shows the catiug distribution for these probabilities.

3We judge that keeping track of the dependencies down to taitms may have a too large overhead.
4If time elapses then of course the delays chosen are updated.



A. Legay et al. 11

Firewire. |IEEE 1394 High Performance Serial Bus or Firewire for shetsed to transport multime-
dia signals among a network of consumer devices. The prot@asobeen extensively studied (seel [37]
for comparison) and in particuldr [81] uses probabilistiegd automata in Rism [30]. In paper([[22] we
adopt the model from [31] and demonstrate horPAL-SMC can be used to evaluate fairness of a node
becoming a root (leader) with respect to the mode of operatio
UPPAAL-SMC provides two methods for comparing probabilities: Probability comparison

estimating the probabilities and then comparing them, amgus ©9
indirect probability comparison from [39], which is morefief °*
cient. Figurd_Ill contains a resulting plot of estimated abib

0.70
>0.56

ities (red and blue lines) and a comparison (yellow areag rféd =, L] comparisor
and blue probability estimates appear very close to eadr @th £o.2s Hfest
entire range, while the yellow area shows that at the beginni 04

the probabilities are indistinguishable (yellow area i8.&tlevel), 0 300 600 900 1200 150C

time

then thefastnode has higher probability to becomeoat (at 1.0 3 _
level), and later the probabilities become too close to lstirsi Figure 11: Probability Comparison
guishable again (at 0.5 level).

Bluetooth [34] is a wireless telecommunication protocol using, ;e,
frequency-hopping to cope with interference between tvicds
in the wireless network. In paper_[22] we adopted the mocgeol'042

from [23], annotated the model to record the power util'matig '

and evaluated the probability distributions of likely rempe times £°°**

and energy consumption. Figurel 12 shows that after 70s t#te co 5, 3130 3520 2510
of a device operation is at least 2440 energy units and theisea energy _
about 2853 energy units. Figure 12: Energy consumption.

Lightweight Medium Access Protocol (LMAC) [38] is a communication scheduling protocol based
on time slot distribution for nodes sharing the same meditilve protocol is designed having wireless
sensor networks in mind: it is simple enough to fit on a modestilare and at the same time ro-
bust against topology reconfiguration, minimizing cotiiss and power consumption. Paperi [25] studies
LMAC protocol using classical BPAAL verification techniques by systematically exploring nekgo

of up to five nodes but the state space explosion preventsaforerification of larger networks. In
paper[[21] we adopt the model by removing verification optattions and parameterizing with probabil-
istic weights, and show how collisions can be analyzed amgepoonsumption estimated using statistical
model checking techniques. The study showed that therditgespetual collisions in a ring topology
but the probability that the network will not recover

is very low (0.35%). The likely energy consumption o.0015
of different network topologies is compared irPU > 0012
PAAL plot (Figure IB), which shows that on averagé ; ,,0
the likely energy consumption after 1000 time unit§
in a ring is higher than in a chain by 10%, possibl§
due to more collisions in a ring. 10 [13] distributed‘c§L |
techniques are applied in exploring over 10000 lar- 3.8154 3.45E4 3 89E4
ger networks of up to 10 nodes, the worst (star-like) energy

and the best (chain-like) topologies in terms of col-  Figure 13: Likely energy consumption.

Il chain
0.0006 I ring

0.0003
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lisions are identified and evaluated.

Computing Nash Equilibriumin WirelessAd Hoc Networks One of the important aspects in design-
ing wireless ad-hoc networks is to make sure that a netwarbbisst to the selfish behavior of its parti-
cipants, i.e. that its configuration satisfies Nash equilibr(NE).

In paper [11] we proposed an SMC-based al-
gorithm for computing NE for the case when net-
work nodes are modeled by SPTA and an utility
function of a single node is equal to a probability
that the node will reach its goal. Our algorithm
consists of two phases. First, we user4AL-
sMmc to find a strategy that most likely (heuristic) 1
satisfies NE. In the second phase we apply statist- 8
ics to test the hypothesis that this strategy actualjgure 14: Nash Equilibrium for Aloha CSMA/CD
satisfies NE.

We applied this algorithm to compute NE for Aloha CSMA/CD ditEE 802.15.4 CSMA/CA
protocols. Figuré 14 depicts the utility function plot fteet Aloha CSMA/CD protocol with two nodes.
Here thep and p’ axis correspond to the strategies of the honest and cheadesr{a strategy defines
how persistent these nodes are in sending their data). WehseeNE strategy is slightly less efficient
than the symmetric optimal strategy (Opt), but it still iésin a high value of the utility function.

©O0000000
OFRNWAUIHI~NO
cooo000000R
FRNWAUINI00W

P

Duration Probabilistic Automata In [20] [y = 4] s = 2]
we compared BPAAL-SMC to Prism [30] in @ N

. e star (2,5] [1,2] End
the context of Duration Probabilistic Auto- _/
mata (DPA) [32]. A Duration Probabilistic,,; (% (L6] [ 2. @
Automaton (DPA) is a composition of Simple el N == 1]

Duration Probabilistic Automata (SDPA). An_. .
SDPA is a linear sequence of tasks th jgure 15: Rectangles are busy states and circles are

must be performed in a sequential ordef.’rwa'tmg when resources are not available. There are

Each task is associated with a dur- f1 =5 andr = 3 resources available.
ation interval which gives the possible Param. Estim. Hyp. Testing
durations of the task. The actual dur="_k__m|Prism Upp Upy Upc | Prism Upp Ups Upc
ation of the tasks is given by a uni—;l 4 2 2r 03 02 02 20 0l 01 01

: g 6 77 06 05 04 39 02 02 03
form choice from this interva. Tog g 3| 265 12 09 07 164 05 04 0.3

model races between the SDPAs w# 40 20 >300 >300 355 262 207
introduce resources to the model suc}rg jg 28 >§88 >§88 g;-g ‘S‘ég ggg
. . > > . . .
that an SDPA might ha\{e to wait for €0 20 20 2300 2300 411 312 265
sources before processing atask. Whgg 30 20 >300 >300 68.8 467 46.1
two SDPAs are in waiting position fora0 55 40 >300 >300 219.5

the same resource, a scheduler decides

which SDPA is given the resource in dable 2: Performance of SMC (sec). Tineolumn is the num-

deterministic manner. ber of SDPAs, thé column is the number of tasks per SDPA
The comparison with Prism wagind themcolumn is the number of resource types in the model.

made by random|y generating mode’é Pp is the UPPAAL model that matches Prisr), Pd the dis-

with a specific number of SDPAs and &'ete encoding and p. the continuous time encoding.
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specific number of tasks per SDPA and translate these indmRmd WrPAAL models. The Prism model
uses a discrete time semantics whereas three models weesfonddbPAAL- one with continuous time
semantics, one that matches the Prism model as close ablpaasil one with discrete semantics that
makes full use of our formalism.
The gqueries to the models wér¢hat is the probability of all SDPAs ending within t time srfEstima-
tion)andls the probability that all SDPAs end within t time units gierethan40% (Hypothesis testing).
The value oft is different for each model as it was computed by simulathgygystem 369 times and
represent the value for which at least 60% of the runs finigligtieir tasks.

The result of the experiments are shown in Table 2 and ireiddiat WPAAL is notably faster than
Prism, even with a encoding that closely matches that ofrPris

Checking of Distributed Statistical Model Checking

As we wrote in Sectio]5, a naive (and incorrect) dis-0-9%
tributed implementation of the sequential SMC algorithmg?-84
might introduce a bias towards the results that are genef-"2
ated by shorter simulations. 5000

The interesting question is how much this bias affecs*®
the SMC results. In the papér [12] we answered this quéﬁé’#36
tion by modeling the naive distributed SMC algorithm in >
UPPAAL-SMC itself. The comparison was made on the .
basis of the SPTA model that ends up in thelocation (;}[o . 90 170 250 330 410
after 100 time units with probability .88, otherwise it uns
end_s up in theNQK Iocatior_1 after 1 time unit (thus PrO-Figure 16: Probability distributions ob-
g;;:mg NOK requires 100 times less time than producingineqd with 1,5, 10, and 20 cores.

We used WPAAL-sMC to compute the probability that the naive distributed SM@oathm will
accept the hypothesks- [<=100] ({ 0K) > 0.5. The results for the different numbers of computational
cores are given in the plot at Figurel 16. Thaxis denotes the total number of runs of the SPTA model
on all the cores, and theaxis depicts the probability that an SMC algorithm accelpéshypothesis not
later than after this number of runs. It can be observed treaptobability of accepting the hypothesis
tends (incorrectly) to 0 as the number of computational corereases.

0.12

7 Conclusions

This paper gives an overview of the features afRdAL-SMC, our new efficient extension of RPAAL
for Statistical Model Checking. Contrary to other existBlyIC-based tool-sets, rRPAAL-SMC allows
to handle systems with real-time features. The tool has bpplied to a series of case studies that are
beyond the scope of classical model checkers. As has bekmeduin this paper, BPAAL-SMC has a
large potential for future work and applications.

Among others, the following extensions oPBAAL-SMC are contemplated.

Floating Point  So far the support of floating point is done via misusing aridrking clock operations.
A better and more general support is needed since the toohdwasdeparted from traditional timed
automata and model-checking.
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Since the tool now supports floating point arithmetic and ae integrate complex functions, it is
a natural extension to add differential equations as wediupport hybrid systems in a more general
way. To fit with the stochastic semantics (in particular howitck delays), only simple equations whose
analytical solutions are known are planned.

New Applications With the extended expressivity of our hybrid modeling laage, our tool can be
applied to different domains, in particular for biologiltstems. WPAAL-SMC now offers powerful
visualization capabilities needed by biologists and adagido statistical model-checking.

Another application is to analyze performance of contrsligenerated by RPAAL-TIGA [6], in
particular their stability or energy consumption. SMC cdsoabe used in the domain of refinement
checking, which is in the end just another type of game.

Rare Events Statistical model checking avoids the exponential growtstaies associated with prob-
abilistic model checking by estimating properties from fiplgé executions of a system and by giving
results within confidence bounds. Rare properties are eftey important but pose a particular chal-
lenge for simulation-based approaches, hence a key olgagatider these circumstances is to reduce the
number and length of simulations necessary to produce a ggvel of confidence. Importance sampling
is a well-established technique that achieves this, homtevaaintain the advantages of statistical model
checking it is necessary to find good importance samplingilligions without considering the entire
state space. Such problem has been recently investigatditefoase of discrete stochastic systems. As
an example, in[28] we presented a simple algorithm that tleesiotion of cross-entropy to find the
optimal parameters for an importance sampling distriluti@ur Objective is to extend our results to
PTAs by exploiting pure timed model checking to improve tharsh for efficient distribution.
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