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Robustness is a standard correctness property whichiwelyimeans that if the input to the program
changes less than a fixed small amount then the output chanbyesdightly. This notion is useful in
the analysis of rounding error for floating point programsaaese it helps to establish bounds on out-
put errors introduced by both measurement errors and byrftppbint computation. Compositional
methods often do not work since key constructs—Ilike the ttmml and the while-loop—are not
robust. We propose a method for proving the robustness ofladop. This method is non-local in
the sense that instead of breaking the analysis down toeslimgis of code, it checks certain global
properties of its structure. We show the applicability of method on two standard algorithms: the
CORDIC computation of the cosine and Dijkstra’s shortesgt pégorithm.
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1 Introduction

Programs using floating point arithmetic are often used ffitical applications and it is therefore funda-
mental to develop methods to establish the correctnesschfmograms. A central problem in dealing
with floating point programs is the propagation of errors ttuthe digitization of analog quantities and
the introduction of floating point errors during computati@s is well known, floating point arithmetic
on these representations is quite different from real nurabthmetic: for example, addition is neither
commutative nor associativiel [5].

The developers of floating point programs would like to thinkerms of real number semantics
instead of the more ad hoc and complicated semantics givenrhg specific definition of floating point
arithmetic, such as the IEEE standard 754 [8]. A centrallprabin trying to reason about floating point
programs is that in dealing with non-continuous operatarch sas the conditional and the while-loop,
floating point errors can result in what appears to be erbati@vior. The problem is that these constructs
are in generahon-robust small variations in the data can cause large variationsamdsults.

When the program contains non-robust operators, traditioampositional methods do not work
well. Decomposing the correctness of a looping programgusipare triples, for example, usually
requires either introducing abstractions (e.g., apprations) which can then make conclusions too
imprecise, or to undergo a very complex and intricate proof.

In this paper, we will take a different approach: we shallctibge some programs where such erratic
behavior is recognized and find a way to reason and bound #ibbbehavior. By moving away from
the reasoning using Hoare’s style emphasis on local and esitigmal analysis of a looping program,
we are able to avoid reasoning about individual erratic behst instead, we will treat such behaviors
as an aggregate and try to bound the behavior of that aggregat
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To illustrate such a possibility in reasoning, considerkBtija’s minimal path algorithimi_[3]. This
greedy algorithm moves from a source node to its neighbdnsgya picking the node with the least
accumulated path from the source. If one makes small changhe distances labeling edges, then the
least path distance will change also by a small amount: ghahis algorithm is continuous. However,
the actual behavior of the loop and the marking of subsequmids can vary greatly with small changes
to edge lengths. Our approach to reasoning will allow us ¢éanall of these apparently erratic choices
of intermediate paths as an aggregate on which we are ablstdblish the robustness of the entire
algorithm.

Plan of the paper In the next section we introduce the concept of robustnedsnanrelate it to the
notions of continuity and-Lipschitz. Sectiofi]3 contains our main contribution: aesoh for reasoning
about robustness in programs and its correctness. We tlogntel applicability of our proposal in two
main examples: The CORDIC algorithm for computing cosinesented in Sectidnl 4, and Dijkstra’s
shortest-path algorithm, presented in Seckibn 5. In Se@iwe discuss some related work. Secfibn 7
concludes and discusses some future lines of research.

2 Robustness of floating-point programs

Robustness is a standard concept from control theory [1]2,Ihe case of programming languages,
there are two definitions of robustness that have been anesid One definition used by Chaudhuri et
al [1] considered robustness to be based on continuity.rGhaudhuri et al[2] considered a stronger
notion of robustness, namely tRe_ipschitz property: that is, changes to the input to a progtead to
only proportionally bounded changes to the output. Anottfproach was used by Majumdar et al in
[9, [10] where robustness is formulated as “if the input of phegram changes by an amount less than
€, wheree is afixedconstant, then the output changes only slightly." In ourepawe propose a more
flexible and general notion of robustness that generalinés &f these concepts. We now motivate and
explain our notion of robustness in more detail.

The notions of robustness considered.in [1, 2] are mainljul$er exact semanticramely when
we do not take into account the errors introduced by the septation and/or the computation. In this
case, the only deviation comes from the error of the inpue ddntinuity property, that for a functioh
on reals is defined as:

Ve>030Vi,i'eR [i—i'|<d=|f(i)—f(i')] <¢

ensures that the correct output can be approximated wheamapproximate the input closely enough.
This notion of robustness, however, is too weak in manyragstibecause a small variation in the input
can cause an unbounded change in the outputkihpschitz property, defined as

Vi,i R |F(i)— (i) < K|i —i]

amends this problem because it bounds the variation in ttpblinearly by the variation in the input.
In our setting, however, theLipschitz property is too strong. This is due to the follogrireasons:

1. If we consider dinite precision semantictike floating point implementations, the constant factor
k can become much bigger than the one optimal for the exactrg@®sa For instance, assume
that the available representations are the numbers in thg8e%?|k € Z} and rounding is done
by taking the lower value, and observe that a function fike x — 2-x, which is 2-4-Lipschitz
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in the exact semantics, is only 1-Lipschitz in this appradensemantics. Indeed, there exist two
values that differ by just 22 and return a result that differ by 2?. For example, take 1 and
12732 we have thatf(1) = 2% and f(1—273?) = 274 — 2736 put the second result will be
rounded down to 2* — 232,

2. There are algorithms that have a desired precisiag a parameter and are considered correct as
long as the result differs by at masfrom the results of the mathematical function they are meant
to implement. A program of this kind may be discontinuousd(trerefore nok-Lipschitz) even
if it is considered to be a correct implementation d&fkipschitz function. The phenomenon is il-
lustrated by the following prograrhwhich is meant to compute the inverse of a strictly incregsin
functiong: R™ — R* whose inverse i&-Lipschitz for somek.

f(i){ y=0;
while(g(y) < i){
y = y+e; }
returny; }

The programf approximateg)—* with precisionein the sense that
VxR f(x) —e< g (x) < f(x)

Given the above inequality, we would like to consider thegpam f as robust, even though the
function it computes is discontinuous (and hencekabipschitz, for anyk).

These two observations lead us to define another proﬁé;retyto capture robustness:
Vi,i' e R, [f(i)— f(i")| <Kli—1'|+&

This property amends the two previous problems by settitay2~3? in the first example and tein the
second example. It also extends the usual definition okthi@schitz property, which can be expressed
asPl,.

Now, we want to extend this definition to allow for severalightes and for other metric spaces
besidesR: e.g., probability distributions, intervals arithmetic eThus, we consider, instead, two metric
spaces: one for input,(d;) and the other for the return valuR,@r). Hence, our robustness propeﬂglg
becomes

Viyi' e 1,dr(f(i), f(i") <kd(i,i') +€
Finally, since we are studying small deviation, it is notfukéo get this property for anyandi’ in
| but rather when they are close: i.€(i,i’) < J, for suitable value® € R*. In convex spaces, this

property can be easily extended to pairs of inputs havintamie more thad by using intermediate
values. So, finally, in this paper we propose the propBrtys, described in the following definition.

Definition 2.1. Let | and R be metric spaces with distangeadd ck respectively, £ | — R a function,
k,e e RT, and letd € R* U {+o}. We define the property, P5 for the function f as follows:

Viiilel, d(i,i') <& = dr(f(i), f(i")) <kd(i,i)+e
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3 A schema and its correctness

The main characteristic of our schema is to subdivide the d¢otb several parts instead of analyzing
it line by line. Our template, which we show in a moment, ddsdhe data structures in an algorithm
into two parts, calledd andB. Here,A is the witness to the progress of the algorithm: in particulse
stopping condition will only depend of (and the input). The structui®is used to accumulate results
that provide the answer when the stopping condition isfeadis

3.1 The schema structure definition

Instead of presenting a formal definition of program schenthraatching of code, we illustrate these
with the schema in Figuig 1.

Here, the schema variables b, c, etc, denote tuples of
program variables such that no program variable occursetwic

Foo(i ;{ - a0 among these schema variables. Program expressions such as

b:bo§ c = dab,c,i);

while(S(i,a){ denotes a program phrase that computes new values for the
¢ = da,b,c,i); variables denoted by from values of variables in the tuples
a=M ?1, c); a, b, ¢, andi . The actual computation here will be denoted
b = N(i,b,c); by O. This looping program initializes the variables anand

} b with the values in the tuplea0 andbO, respectively. The

return b; } stopping condition for the loop is given by the boolean vdlue

expressiorS(i , a) and the result of the program is the tuple
Figure 1: The main template of values denoted by the variableshin
We shall assume that all program variables are typed in the
usual way: variables may range over the values in their asso-
ciated type. Our analysis of the metric properties of a logpi
program will, however, consider that tuples of variables, éxample,a andb in Figure[l, range over
somemetric spacen the Cartesian product of the variables in the tuple.

3.2 A sufficient condition for robustness

We shall now prove that a program having the generic struc-
ture of foo given in Figurd Il has, under certain conditions, thLe

propertyP . 5 for somek, €, 5. I st FZO(_' )aé
The aim of our method is to postpone the analysis of the ex- ~ bOZ
act semantics of commands as far as possible. In order to begi ~ 0- ’

the analysis without specific knowledge of this semantias, w
need to manipulate other programs made from the functigns
M, andN that have been identified. For example, the program

while(! S(i,a)){
c = Qa,b,c,i);

listFooin Figure[2 will be used to extract the list of values of b= J_rl’

c obtained for a particular execution fdo with inputi. The ! [J_] = G

new lines added téistFoowill assume the usual semantics for z ~ I\N/E? E) ;:) )

natural numbers. ) e
return |; }

We now define two new programs. The first is thoey,

program given below: it has the same shap&asut instead _ _ _
Figure 2: Collecting: values in a list
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of settingc by the computation of( a, b, c, i ), it setsc with

the values of a list given in input. Naturally, the stop cdiodi

for the loop is now that all elements of the list have been ssme. Note that sin@was just used in the
computation o, the commands affectingare now useless and can be removed.

foo b(l,i){
/1 a = ao;
b = bO;

for(int j =0; j <l.length; j++ ){
c =1[j];
/1 a Ma, c);
b =Ni,b,c); }
return b; }

We have used Java-style instructions such.kmgth for the length of the list and|[j] for the jt"
element of the list. (The// syntax is used to form a comment.) We define the new fundtiog(i,i’) =
fooy(listFod(i),i"). Notice thatfoog(i,i) = foo(i).

The second prograrfoo,(1) is the same program dso, except thag is returned instead df. In
this program, the lines whetleis set are now useless.

foo a(l){
a = ao0;
/1 b = bO;
for(int j =0; j <Il.length; j++ ){
c =1I[il;
a =Marc);
11 b = Ni,b,c);

}

return a; }

Finally, we definefooa(i) = foo,(listFod(i)). The two functionfooa and foog and relations between
them will be used to indirectly analyze the progréo.

In what follows, we use the following conventions: the domai the variables, b, ¢, andi areA,
B, C andl, respectively, and0 andb0 are some determined constants of tyjpendB respectively. For
every typeX, the expressioX* denote the type of lists of typs.

We now introduce four conditions that need to hold to proa thefoo program satisfieg ¢ 5 for
appropriate values &, €, andd. These conditions apply tightparameters: namel®, ky«, en+, Ka, £,
Ks, &, &. ConditionC1 expresses the prope. .. 5 for the transformed prograrfeos, conditionC2
expresses the fact that there is a relationship betweerathess/stored i\ and the values stored B,
and conditiorC3 andC4 address the stability of the stop conditisi, a).

Condition 3.1(C1). VI €C*.R,. ¢..56(Azfoon(l,2)).

The next condition states that whenever two inpwtadi’ are within ad of each other then it is the
case that if their images id (underfoo,) are close, then their imagesB(underfooy,) are close.
Condition 3.2 (C2).

\V/il,i € |,d|(i,i1) <d = dB(fOOB(i,i),fOOB(il,i)) < kAdA(fOOA(il),fOOA(i))+52

The stopping conditiors should satisfy the following two conditions. The first exgses that the
boundary of the regiofia | S(i,a)} cannot vary too much.
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Condition 3.3 (C3).
Vac AVi,i'el,d(i,i') <dASi'a) = JFd e Ada(ad) <ksd (i',i) +& A Si,d)

The following condition orS states that the diameter of the regifm| S(i,a)} is as small as the
desired precision.

Condition 3.4 (C4).
Va,d e AViel,Si,a) A Si,d) = da(a,d) < &

Finally, our main theorem is the following.

Theorem 3.1. If the programfoo terminates and the conditions C1, C2, C3, and C4 hold, thgp B
holds for the function computed ligo with ky = k- + kaks and ey = en- + Ka(&s+ &) + &2.

Proof In the proof, we will use these two observations:

1. SincelistFod(i) is obtained from the computation ffo(i), and sincefoog(i,i’) replaces the result
of O by this list, if we computdoog(i,i) we are replacing each value foby itself. Therefore we
have thatfoo(i) = foos(i,i).

2. In the execution ofoo(i), the final value of that satisfies the stopping conditi&, a) is fooa(i).
By the observatioh]1, proving the theorem is equivalent twipg

Vi,i0 e 1,d (i,i0) < 8 = dg(foog(i,i),foog(i0,i0)) < kodi (i,i0) + &.
By condition C1, choosingy= listFodi0), we have
Vi, i0 e l,d(i,ig) < & = dg(foop(listFoq(i0),i0), fooy(listFod(i0),i)) < kn-d; (i,i0) + &ns.
By definition of foog, we have
Vi,i0e I,d(i,ig) <& = dg(foog(i0,i0), foog(i0,i)) < ky-d; (i,i0) + &N (1)
From observatioh]23(i0, fooa(i0)) holds. By condition C3 (instantiatingwith i0) we derive that:
Vi,i0 e l,d (i,ig) <0 = Ja’ € A da(fooa(i0),a") < ke (i,i0) + & A S(i,&). 2)

Hence, by observatioris 2 arld 3, fooa(i)) also holds. From inequality 2) and condition C4, we
derive
da(d,foon(i)) < &. €))

From the last inequality and from inequalify (2), we deriusing the triangle inequality
da(fooa(i0),foon(i)) < ksd (i,i0) + &5+ &. 4
From condition C2 and inequaliti/l(4), we have
Vi,io e 1,d (i,i0) < 0 = dg(foog(i0,i),foos(i,i)) < ka(ksd(i,i0) + &+ &) + &2 (5)
From inequalities[{1) and[i(5), using the triangle inequalite derive

Vi,ioel,di(i,i0) <o
=
dg(foos(i,i),foog(i0,i0)) < kn+d (i,i0) 4 en- + Ka(ksd (i,10) + &5+ &) + &2

Finally, we definesp = en« + ka(&s+ &) + €2 andky = kn+ + kaks. O
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4 Example: the CORDIC algorithm for computing cosine

In this section we apply our method to a program implementirigCORDIC algorithm[[13], and we
prove that it isP ¢ .

CORDIC (COordinate Rotation Dlgital Computer) is a classiofiple and efficient algorithms to
compute hyperbolic and trigonometric functions using dedygic arithmetic (addition, subtraction and
shifts), plus table lookup. The notions behind this commutinachinery were motivated by the need to
calculate the trigonometric functions and their inverse®al time navigation systems. Still now-a-days,
since the CORDIC algorithms require only simple integerrm@&ORDIC is the preferred implementa-
tion of math functions on small hand calculators.

CORDIC is a successive approximation algorithm: A sequesfcgauccessively smaller rotations
based on binary decisions drives the algorithm towards aheewve want to find. The CORDIC version
illustrated in the program below computes the cosine of aigyeain [0, 71/2)].

doubl e cos(doubl e bet a)
{
double x =1, y =0, x new, theta = 0, sigm, e = 1E 10;
i nt Pow2=1,;
while(|theta - betal] > e) {
Pow2 x= 2;
if(beta > theta)
si gma=1;
el se
si gma=-1;
si gma=si grma/ Pow2;
theta += atan(sigm); // Val ue stored
fact= cos(atan(sigm)); // Value stored
X_new = X + y*signg,
y = fact * (y - x*sigma);
x = fact *» x_new, }
return x; }

Note that this program makes call to trigopnometric fundidike cosine itself. But in the actual
implementation, as it is explained in the comments, thedle ¢(that are done on values divided by
successive powers of two) are stored in a database so thammuoutation of these functions is actually
done.

4.1 Scheme instantiation

To apply our method, we have first of all to instantiate theesth variables\, B, C (cf. Section 3.11)
with a suitable partition of the variables of the program.e Mariabled are determined: they must be
instantiated with the variables which represent the input.

In this example the patrtition for the variables will be thédaing.

: = doubl e t het a;
: = doubl e x,y;

: = doubl e si gng;
: = doubl e bet a;

-0 >
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We now must define a suitable metric on the types of the va$all A and B. We choose the
following:

e dja is the usual distance dR.

e dg is theL, norm onR2.

Now we need to identify the stopping conditi&,a). This is given by:
S(beta,theta) :=| theta - beta | <= e

Then, we need to instantiate the functidviga, c), N(i,b,c), O(a,b,c,i) of the schema with suitable
regions of code. We choose these as follows:

Q(t het a, <x, y>, si ghm, beta) {
Pow2 »= 2;
i f(beta > theta)
si gma=1;
el se
si gma=-1;
si gma=si gma/ Pow2;
return signm; }

Mt het a, si gma) {
theta += atan(sigm);
return theta; }

N( bet a, <x, y>, si gm) {
fact = cos(atan(sigm));
X_hew = X + y*signg;
y = fact » (y - x*xPow2);
x = fact * x_new,
return <x,y>; }

Finally, we need to prove that the conditions C1, C2, C3, ahd . Sectiori 3.R2) are satisfied.

4.2 Proofs of the conditions

C1: vVl € C* Ry, ¢..6(AZfooy(l,2)) This condition can be proved for the following program bytsuc
standard techniques as abstract interpretation or Haplestr

doubl e cos(doubl e beta, int[] |istFoo)
{
double x =1, vy =0, x _new, theta =0, sigm = 0,e = 1E- 10;
i nt Pow2=1,;
for(int j=Qj<listFoo.length;j++) {
sigma=li stFoo[]j];
fact = cos(sigm);
X_new = X + y*signg;
y = fact » (y - x*sigma);
x = fact * Xx_new;
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}

return x*K;

C2: Vig,i € 1,di(i,i1) <& = dg(foog(i,i),foog(i1,1)) < kada(fooa(i1),fooa(i)) + &2 This part of
the proof is rather technical. The interested reader caritfindhe appendix of([4]. The proof of C2 is
the most difficult part of this example. We have proved it “lantd”, and we do not claim that there is an
easy way to automate it. However, this proof points out thetan prove the intended property without
considering the whole semantics of the program, but justelexant properties.

C3: Vac AVi,i' el,di(i,i") <A S(i',a) = Ja € Ada(a,d) < kg (i',i) + & A Si,&) Thein-
stantiation ofS(i,a) corresponds t¢i —a| < e, so C3 is given by the condition:

VacAVii'elji—a <edd el,jla—d| <ksi—i'|+en|'—d|<e

We can satisfy this property by settiaj=a+i’ —i, k=1, andes = 0.

C4: Va,d e AViel,S(i,a) A Si,d) = da(a,@) <& C4 can be rewritten, once we instantiate
S(i,a) to

Jg,Vad cAVviel,li—a <enli-d|<e= |a—-d| <&

Which is true forg = 2e.

5 Example: Dijkstra’s shortest path algorithm

In this section we apply our method to Dijkstra’'s shorteghpalgorithm. This is an algorithm that,
given a graph, computes the shortest path between a soud@ngavertex of the graph. We will prove,
by instantiating our schema, that the following program lempenting the Dijkstra’s algorithm can be
provedPy o in the semantic of real numbers using our theorem.

In the following program we use some conventions: the nurnbeertices is fixed tav, all vertices
are connected, and the maximum value for a path is 999 (s@mnd-gt of infinity).

int[] dijkstra( int graph[w][w])/{
int pathestimate[w , mark[w ;
int source,i,j,u,predecessor[w, count=0;
int mnimun(int a[],int nf],int k);
for(j=1;j<=w j++){
mar k[ ] =0;
pat hesti nat e[ j ] =999;
predecessor[j]=0;}
sour ce=0;
pat hest i nat e[ sour ce] =0;
whi | e( count <w) {
u=m ni mun{ pat hesti mat e, mar k, w) ;
mar k[ u] =1;
count =count +1;
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for(i=1;i<=wi++){

i f(pathestimate[i]>pathestimate[u] +graph[fu][i]){
pat hestimat e[ i ] =pat hesti nat e[ u] +graph[u][i];
predecessor[i]=u;}}}

return pathestinate;}

int mnimun(int af],int n],int k){

int m =999;
int i,t;
for(i=1;i<=k;i++){
Pf(nti]r=1){
if(m>=a[i]){
m=ali];
t=i;}}}
return t;}

5.1 Scheme instantiation

To apply our theorem, we have to instantiate the schemeblasid4, B, C with some variables of the
program. The variables dfare instantiated with the variables that represent thetinyye choose the
following instantiation:A contains the variablesountand mark B the array of doubl@athestimatand
C the variableu which identify the current vertex to propagate.

A :=int count;int mark[w];
B := pathestimate[ W ;
C:=int u

I o= graph[wj[w];

We now have to choose a suitable metric on the types of thablas, and we choose the following:
dy is theL; norm on an array of real numberd is theL.,, norm on array of real numbers adg is the
identity metric: that is, the distance between two elemehisis 0 if they are the same elements and it
is oo otherwise.

Next, we identify the stopping condition:

S(graph, <count, mark>) := count >= w
Finally, we identify the function$/(a,c), N(i,b,c), O(a,b,c,i) with the following regions of code:

O (count, nmark, pathestinmate, u, graph) {
u=mi ni mun{ pat hesti mat e, mar k, wj ;
int mnimun(int af],int n],int k){

int m =999;
int i,t;
for(i=1;i<=k;i++){
Pf(nfi]!=1){
if(m>=ali]){
m=ali];
t=i;
}
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}
return t;
}
return u;

}

M (<mar k, count>, u) {
mar k[ u] =1;
count =count +1;
return <mark, count >;

}

N (graph, pathestimte, u) {
for(i=1;i<=wi++){
i f(pathestimate[i]>pathestimate[u] +graph[u][i]){
pat hestimat e[ i ] =pat hesti nat e[ u] +graph[u] [i];
}
}

return pathesti nate;

We now have to prove that the conditions C1, C2, C3 and C4 lwlthé given instantiations.

5.2 Proof of the conditions

C1: vl € C*.R,. ¢..5(Azfoop(l,2)) ForalliO € I, foo,(i0,i) is k-Lipschitz andk does not depend on
i0. The proof of this condition can be done by using standainieal (such as Hoare triples or abstract
interpretation) on the following program.

int[] dijkstra( int graph[w][w], int[] |istFoo)
{
int pathestimate[w , mark[w];
int source,i,j,u, predecessor[w], count=0;
int mninun(int a[],int nf],int K);
for(j=1;j<=w, j++){
mar k[ j ] =0;
pat hesti mat e[ j ] =999;
predecessor[j] =0;
}
sour ce=0;
pat hest i mat e[ sour ce] =0;
for(j=0;j<listFoo.length;j++){
u=listFoo[j];
for(i=1;i<=wi++) {
i f(pathestimate[i]>pathestimate[u] +graph[u][i]){
pat hesti mat e[ i ] =pat hesti mat e[ u] +graph[u][i];
predecessor[i] =u;
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}
}

return pathesti mate;

In an exact semantics (with real numbers), this programligpdehitz as any element plathestimate
is the sum of some elementsgfaph If the analysis is done with an exact semantics (with reallmers),
we are able to prove that this program is 1-Lipschitz.

C2: Vig,i e l,di(i,i1) <& = dg(foos(i,i),foog(i1,i)) < kada(fooa(i1),fooa(i))+ & The proof for
C2israther technical. The basic idea is however quite simipbeed, thé structure is a set in a discrete
space on which elements are added. So we prove that whateverder of the element Bis constant.
This is done by showing that local transpositions do not geahe result. So the principle should apply
in other algorithms with the samfestructure. The complete proof can be found in the appendi#]of

C3:VacAVi,i'el,d(i,i') <o AS(i';a) = Ja € Ada(a,d) <k (i’,i)+& A Si,a) Since the
instantiation ofS(i’,a) iscount >= w, the stopping condition does not depend @when the number
of nodesw is fixed). Hence, the formula is satisfied fir= a with the constanks = 0 andes = 0.

C4:vVad e AViel,Si,a) ASi,d) = da(a, @) <& Since{a|S(i,a)} is a singleton for every(it
corresponds to the state where all the nodes are markegy;gherty holds foi; = 0.

6 Related Work

Static analysis via abstract interpretation can be an tafeeenethod for deriving precise bounds on
deviations|[6, I7]. Since such static analysis is generatijtéd to analyzing code line-by-line, significant
over approximations might be necessary. For example, wheauatering an “if” instruction (or a
looping construct), a static analyzer will have to assunag éither the control flow is not perturbed by
the finite-precision errors (often unrealistic) or the tesfrom the two branches of the conditional must
be merged (often causing significant over-approximatidn)our examples here, control flow can be
perturbed a great deal by precision errors and merging lratiches is not a solution as the program is
not locally continuous. Our method is useful for solvingsthroblem since it avoids narrowly analyzing
the semantics of the conditional.

In the two papers |2,]1], robustness analysis is done for fiiiestta’s algorithm. The authors split
their analysis into two parts: first they prove the contipuwf the algorithm and second they prove
it is piecewise robust. The problem of discontinuity thah cecur at some point of the execution is
solved through an abstract language syntax for loops. ldlaur theorem, this syntax need additional
conditions (mainly the commutativity for two observablaiz@lent commands). However, their abstract
language is more specific than our theorem: CORDIC is noténsttope of these papers which also
means their conditions are simpler and their proofs are mioeeted than ours. The other distinction is
in the semantics of the language. Their paper aims at fungghe whole semantics which is an exact
one and computational errors are treated qualitatively Wit argument that a robust program is not
sensitive to small variations. With our analysis, we giveuargitative definition of what small enough
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means. The last difference is our design for analyzing woaHrobustness. We prefer to consider non-
local behaviors as happening and solving them by a programsfsrmation using pattern than to rewrite
the program in a syntax that hide the non-local behavior.

7 Future work and conclusion

We have presented a theorem that allows us to prove the r@assdf some floating point programs. This
theorem is abstract enough to be applicable in a numberdrdifferent programs: here, we illustrate
its use with programs to compute cosine using the CORDIC odesimd to compute the shortest path in
a graph.

For future work, we would like to address a key possible weakrof our method: it is currently tied
to a particular template. Although that template is presgtabstractly, there should certainly be ways to
improve the generality beyond the matching of a templatsoAgince the proper#y, . s (Definition[2.1)
is more general than botkLipschitz and the other definitions of robustness [9, 103, would like to
explore applications of this property to cases where netththe other definitions work.

Condition C2 is, at least in the examples considered in thjgep the most difficult condition to
verify. This suggests that we might consider more res@gationditions that would entail C2.

Acknowledgments: We would like to thank Eric Goubault and Jean Goubault-larfer many useful
discussions on the topic of this paper and for the helpfulroemts of the anonymous reviewers.
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