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We have recently defined a weak Markovian bisimulation egjaivce in an integrated-time setting,
which reduces sequences of exponentially timed interrt@reto individual exponentially timed
internal actions having the same average duration and Baaqurobability as the corresponding
sequences. This weak Markovian bisimulation equivales@edongruence for sequential processes
with abstraction and turns out to induce an exact CTMC-leggjregation at steady state for all
the considered processes. However, it is not a congruernthe@gpect to parallel composition. In
this paper, we show how to generalize the equivalence in athatya reasonable tradeoff among
abstraction, compositionality, and exactness is achiéwedoncurrent processes. We will see that,
by enhancing the abstraction capability in the presencewnéwarrent computations, it is possible to
retrieve the congruence property with respect to paradiglmosition, with the resulting CTMC-level
aggregation being exact at steady state only for a certhiseswf the considered processes.

1 Introduction

Several Markovian behavioral equivalences (§ée [1] andefezences therein) have been proposed in
the literature for relating and manipulating system moaath an underlying continuous-time Markov
chain (CTMC) [15] semantics. However, only a few of them arevjgled with the useful capability
of abstracting from internal actions. In particular, [3sh@&cently addressed the case in which internal
actions are exponentially timed — rather than immediate iik [9] — by defining a weak Markovian
bisimulation equivalence inspired by the weak (Markovismmorphism of([11]. The idea is to reduce
to individual exponentially timed internal transitions all tkequencesf exponentially timed internal
transitions that traverse states enablondy exponentially timed internal actions, with the reduction
preserving the average duration and the execution pratyadsilthe original sequences.

From a stochastic viewpoint, this reduction amounts toagipty hypoexponentially distributed du-
rations with exponentially distributed durations havitg tsame expected value. As a conseguence,
processes related by the weak Markovian bisimulation edgmee of [[8] may not possess the same
transient performance measures, unless they refer to ppiexpef the form mean time to certain events.
However, those processes certainly possess the same-statglperformance measures, because the ag-
gregation induced by the considered equivalence on the CliMi€rlying each process has been shown
to be exact at steady state.

The weak Markovian bisimulation equivalence of [3] is notangruence with respect to parallel
composition, a fact that limits its usefulness for compostil state space reduction purposes. The con-
tribution of this paper is to show that compositionality dam retrieved by enhancing the abstraction
capability of the considered equivalence in the presengeardllel composition. The basic idea is al-
lowing a sequence of exponentially timed internal traossioriginated from a sequential process to be
reduced also in the case in which that process is composedrallgd with other processes enabling
observableactions. Unfortunately, there is a price to pay for achigwwompositionality: exactness at
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steady state will no longer hold for all processes, but onlyprocesses with no synchronization at all
and processes whose synchronizations do not take pladéafgre the sequences to be reduced.

This paper is organized as follows. After introducing a Maikn process calculus in Selct. 2 and
recalling strong and weak Markovian bisimilarity in Sddt.i8 Sect[ 4 we develop a variant of weak
Markovian bisimilarity that deals with parallel compoagitiand we investigate its congruence and exact-
ness properties. Finally, in Selct. 5 we provide some coimdudmarks.

2 Concurrent Markovian Processes

In order to study properties such as congruence of the vgiarbe defined) of the weak Markovian
bisimilarity of [3], we introduce typical behavioral opéoes through a Markovian process calculus
(MPC for short). In[[8], we have considered sequential pgses with abstraction built from opera-
tors like the inactive process, exponentially timed acpogfix, alternative composition, recursion, and
hiding. Here, we include parallel composition too, so asd@ble to represent concurrent processes.

As usual, we denote the internal action bgnd we assume that the resulting concurrent processes
are governed by the race policy: if several exponentiaityetl actions are simultaneously enabled, the
action that is executed is the one sampling the least dataifde also assume that the duration of an
action deriving from the synchronization of two exponditiimed actions is exponentially distributed
with a rate obtained by applying (like, e.g., in [10]) somenxoutative and associative operation denoted
by ® to the rates of the two original actions.

Definition 2.1 LetActy = Namex R- o be a set of actions, whedame= Nameg U {1} is a set of action
names — ranged over layb — andR~ ¢ is a set of action rates — ranged overyu, y. Let Var be a set
of process variables ranged over XyY. The process languag#.%\ is generated by the following
syntax:

P =0 inactive process
| <aA>.P exponentially timed action prefix
| P+P alternative composition
| X process variable
| recX:P recursion
| P/H hiding
| P|sP parallel composition

wherea € Name A € R, X € Var, andH,SC Nameg. We denote by the set of closed and guarded
process terms o .Z\ — ranged over by, Q. [

In order to distinguish between process terms suchaad >.0+ <a,A >.0and<a, A >.0, like in [3]
the semantic mod€]JP]u for a process term® € Py is a labeled multitransition system that takes into
account the multiplicity of each transition, intended as ttumber of different proofs for the transition
derivation. The multitransition relation §P]y is contained in the smallest multiset of element®afx
Acty x Py that satisfies the operational semantic rules in Table 1 +evhe— _} denotes syntactical
replacement — and keeps track of all the possible ways ofidgreach of its transitions.

3 Strong and Weak Markovian Bisimulation Equivalences

The notion of strong bisimilarity for MPC is based on the camigon of exit rates [11, 10]. The exit rate
of a process tern®? € Py with respect to action nameec Nameand destinatiorD C Py is the rate at
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aA
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P uP  ads Py a¢s
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P1||sPo——m P |IsP> Pi|[sPo——mPy|sP;
aA; aAz
P1—>M P]/_ P2—>M Pé acsS
(SYNm) YT /
P|[sPo——m Py [|sP;

Table 1: Structured operational semantic rules for MPC

which P can execute actions of naraehat lead tdD:

rate(P,a,D) = S{A € Roo| IP € D.P— sy P’}
where{| and |} are multiset delimiters and the summation is taken to be ieét® multiset is empty.
By summing up the rates of all the actions Bf we obtain the total exit rate d?, i.e., rate(P) =
Y acnamerate(P, a, Py ), which is the reciprocal of the average sojourn time assedtiaith P.

Definition 3.1 An equivalence relatio overP), is a Markovian bisimulation iff, whenevéP;, P,) €
A, then for all action names < Nameand equivalence classBsc Py /%:

rate(P,,a,D) = rate(P»,a,D)
Markovian bisimilarity~yg is the largest Markovian bisimulation. [

As shown in[[11] 10,16,/7], the relationpg possesses the following properties:

e ~\ IS a congruence with respect to all the operators of MPC asaseEcursion.
e ~yg has a sound and complete axiomatization whose basic lavehaven below:

(“B.1) P+P, = P+P

(B 2) PL+P)+Ps = P+ (P+Ps)
(“B3) P+0 = P

(B 4) <a,A1>P+<ai>P = <aAi+A>P

The last one encodes the race policy and hence replacesthpatency lawP + P = P valid for
nondeterministic processes. The other laws are the usstabdiion laws for the hiding operator
and the expansion law for the parallel composition operator
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e ~\pg induces a CTMC-level aggregation known as ordinary lumgbivhich is exact both at
steady state and at transient state.

e ~\p can be decided in polynomial time for all finite-state preess

In [3], we have weakened the distinguishing powergfg by relating sequences of exponentially
timed t-actions to single exponentially timadactions having the same average duration and execution

T,A
probability as the sequences. Givere Py, we say thaP is stable ifP —~/— P’ for all A and P/,
otherwise we say that it is unstable. In the latter case, wetlsat P is fully unstable iff, whenever

PLM P, thena= 1. We denote byPw 1y andPu nfy the sets of process terms By, that are fully
unstable and not fully unstable, respectively.

The most natural candidates as sequences of exponentialyl r-actions to abstract are those
labeling computations that traverse fully unstable states

Definition 3.2 Let n € Nyg and Py, P, ..., Py 1 € Py. A computationc of lengthn from Py to P,
T,A T,A T,An . . . .
having the formP; - v P ’ M -.. —M Pnrrisreducible iffR € Py foralli=1,....n. m

If reducible, the computation above can be reduced to a single exponentially tim#ém@nsition whose

rate is obtained from the positive real value below:
n

n
probtime(c) = (ﬂlrate(é‘w> ) (i%m>
by leaving its first factor unchanged and taking the reciagrof the second one. The valpeobtimgc)
is a measure of the execution probabilityaoffirst factor: product of the execution probabilities of the
transitions ofc) and the average duration of(second factor: sum of the average sojourn times in the
states traversed k).

The weak variant ofv\g defined in[[3] is such that (i) processeshp nry are dealt with as irvg
and (ii) the length of reducible computations from procesaéy f, to processes ifty nr iS abstracted
away while preserving the execution probability and theraye duration of those computations. In
the latter case, we need to lift measymebtimefrom individual reducible computations to multisets
of reducible computations. Denoting byducomgP,D,t) the multiset of reducible computations from
P € Py 1, to someP’ in D C Py whose average durationtis R, we consider the followingrindexed
multiset of sums oprobtimemeasures:

pbtmP,D) = U {l >  probtimgc) [}
teR-os.t. reducom@P,D,t)#0 cereducom@P,D,t)

Definition 3.3 An equivalence relatio C (Py nfu X Pmnfu) U (Pmtu X Pmfu) is @ weak Markovian
bisimulation iff for all (P, P,) € %:

e If P, € Py i, then for alla € Nameand equivalence classBsc Py /%:
rate(Py,a,D) = rate(P;,a,D)

e If P;,P, € Py 1, then for all equivalence classBsc Py nfy/%:
pbtmP;,D) = pbtm(P,,D)

Weak Markovian bisimilarityzyg is the largest weak Markovian bisimulation. [

Example 3.4 Typical cases of weakly Markovian bisimilar process termes a

<T,U>.<T,y>.Q  <T,y>.<T,u>.Q <T’%>‘Q
and:
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<T,HU>.(<T,11>.Q1+ <T,1>.Q2)
1 -1
<1, A <l+ 1> >Qu4<T L(%JrL) >.Q,

"t \H T nte TVt Yty
and:
<T,U1>.<T,y>.Q1 4 <T,Uo>.<T,y>.Q2
-1 -1
b 1 1 L2 1 1
<U i+ (u1+uz T v> >_'Q1+ <U it (u1+uz T v> >.Qz
whereQ, Q1, Q2 € Pum nru (See[[3] for the details). [

Similar to weak bisimilarity for nondeterministic process=y is not a congruence with respect to
the alternative composition operator. This problem, whial to do with fully unstable process terms,
can be prevented by adopting a construction analogous turhesed in [13] for weak bisimilarity over
nondeterministic process terms. In other words, we havpyitydhe exit rate equality check also to fully
unstable process terms, with the equivalence classes sidenrbeing the ones with respectigs.

Definition 3.5 Let P;,P, € Py. We say thatP; is weakly Markovian bisimulation congruent B,
written Py ~yg P, iff for all action names € Nameand equivalence classBsc Py / ~us:
rate(P;,a,D) = rate(P»,a,D) -

As shown in[[3], the relationzg possesses the following properties:

e ~\g IS the coarsest congruence — with respect to all the operafoMPC other than parallel
composition, as well as recursion — containeekips .

e ~\p has a sound and complete axiomatization over the set of sgajugrocess terms (i.e., pro-
cess terms with no occurrences of the parallel compositg@rator), whose basic laws are those
of ~vg plus the following one (which includes the various caseswhio Ex.[3.4):

(/B 5) <a,A >._z| <T,li>. _ZJ<T,V..,->.P..J- =
i€ JEJ

' ) —1
<ar>3 -zfr’%'w_y’“(%*;v) >R
i€l jEy

wherel # 0 is afinite index set}; # 0 is afinite index setfor alle I, 4 =S¢ ti, andy =y jc3 Vi j
foralliel.

e ~ypg induces a CTMC-level aggregation called W-lumpability,iethis exact only at steady state
and performs reductions consistent witlyg 5. Moreover,~yg preserves transient properties
expressed in terms of the mean time to certain events.

e ~yg can be decided in polynomial time only for those finite-statecesses that are not divergent,
i.e., that have no cycles of exponentially timedransitions.

4 Compositionality for Concurrent Processes

The relation~g is not a congruence with respect to the parallel composdjmerator, thus restricting
the usefulness for compositional state space reductigropas of the framework developed|in [3].

Example 4.1 Assuming parallel compaosition to have lower priority thawy ather operator, it holds that:

<AA>.<T,U>.<T,y>.0 ~yp <a,A>.<T, %>.g
while:

<aA>.<T,U>.<T,y>.0[p<d,A">.0 v <a,A>.<T, %}.QH@ <a,A’>.0
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First of all, we note that:
<T,u>.<T,y>.0lp<a,A">.0 #up <T, 2L > 0lp<a,A’>.0

T
In fact, fora’ # 1 the two process terms are not fully unstable with:
rate(<t, u>.<t,y>.0(p<ad,A’>.0,1,[<T,y>0o<&,A">.00~s) = H
rate(<r,:’Q’y>.g|]@<a’,)\’>.g,T,[<r,y>.QH0<a’,)\’>.Q]zMB) =0
On the other hand, fa' = T the two process terms are fully unstable with:
pbtm(<1, u>.<7,y> 0o <&,A">.0,[0l/00~ys) = {|(5hr - vir) (G + 3w + 1)

(u—ls:l)\/ ' yil)\’)'(ﬁ—i_ y—s—l)\/ +%/)7
() + 2+ 1))
(
(

pbtm(<7, X > 0llp<a,A’>.0,[0(l00~ys) = {(=rSs) (w5 + )

»p+y If—%,\-/r)\’ %f)ﬂ )
. A +
Th ﬁ‘i‘)‘l) (%4’_)\/ ZJ%H}
us:
[<T,u>.<T,y>.0[lo <&, A">.0lxyg N [<T, 75 >.0]0<&,A">.0)xye = 0
and hence:

rate(<a,A >.<T,u>.<1,y>.0[p<a,A">.0,a,[<T,u>.<T,y>.0[p<&,A">.0]~ys) = A
whereas:
rate(<a, A >.<T,%>.Q\|@<a’,)\’>.9,a, [<T,u>.<T,y>0|p<d,A">.0/~,5) =0
Also the two divergent process terms ¥ec<t,u>.<7,y1>.X and recX : <T,U>.<T,p>.X, Vi # V>,
are related by~yg but this no longer holds when placing them in the contét<a’,A’>.0,& #7. =

Taking inspiration from the weak isomorphism pf [11], inghsiection we show how to retrieve full
compositionality by enhancing the abstraction capabhiifty\g in the case of concurrent computations.
The price to pay is that exactness will hold at steady staiefona certain class of processes.

4.1 Revising Weak Markovian Bisimilarity

As we have seenyyg and~yg abstract from sequences of exponentially timeattions while preserv-
ing (at the computation level) their execution probabitityd average duration and (at the system level)
transient properties expressed in terms of the mean timertaic events as well as steady-state perfor-
mance measures. This kind of abstraction has been done #intipdest possible case: sequences of
exponentially timed -actions labeling computations that travefigky unstable states

In order to achieve compositionality when dealing with aament processes, a revision of the notion
of reducible computation is unavoidable. More preciselg meed to address the case of sequences
of exponentially timedr-actions labeling computations that traversestable states satisfying certain
conditions The reason is that, if we view a system description as thallphcomposition of several
sequential processes, any of those processes may havedogalitations traversinilly unstable local
states but in the overall system those local states mapdoe of global states that are not fully unstable

For instance, this is the case with the processu>.<t,y>.0||p<a,A >.0, whose underlying la-
beled multitransition system is depicted below on the left:

S11 T, S12 T,y. S13 21 TUy/(uty) S22
e R TN e a
S14 LTH S5 TY “{51,6 S3  TRY/(U+Y)  Spa

As can be noted, the fully unstable local states traversatidpnly local computation of the sequential
process<rt, U>.<T,y>.0 may become part of unstable global states that are not folyable ifa # 7.
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Our objective is to change the notion of reducible compaiteith such a way that the labeled multitransi-
tion system on the left can be regarded as being weakly Makdusimilar to the labeled multitransition
system on the right. As can be noted, this implies that ei@tyirobabilities and average durations can
only be preservedt the level of local computationhence transient properties expressed in terms of the
mean time to certain events can no longer be preserved ajstaslevel.

In a concurrent setting, a sequence of exponentially timadtions may be replicated due to inter-
leaving, in the sense that it may label several computatioaisshare no transition. The revision of the
notion of reducible computation is thus based on the ideia filvaeach computation that traverses fully
unstablelocal states and is labeled with exponentially timedctions, we have to recognize — and take
into account at once all the replicasof that computation and pinpoint their initial and final st In
our example, there are two replicas with initial steggsands,; 4 and final states; 3 ands; e.

In general, a one-to-one correspondence can be establbisitwden the states traversed by any two
replicas by following the direction of the transitions. lmr@xample, the pairs of corresponding states are
the two initial stategs; 1,s;.4), the two intermediate statés; »,s; 5), and the two final state; 3,516).

We can say thavhen moving vertically the current stage of the replicasresprved

In addition to the exponentially timettransition belonging to the replica, any two states trewdr
by the same replica can only possess transitions that angipaiidentically labeled. Those transitions
are originated from (the local states of) sequential preees$hat are in parallel with (the local state of)
the sequential process originating the considered reduc@mputation. The set of those transitions not
belonging to the replica can thus be viewed asdhtextof the replica. In our example, the context of
the top replica has a single transition labeled with A >, whereas the context of the bottom replica is
empty. Thuswhen moving horizontally the context of each replica is @resd i.e., the context does
not change along a replica. On the other hatiffierent replicas may have different contexts

With regard to the identification of the boundary of the regdi of a reducible computation, there are
two possibilities. One is that the final states have no expiaiéy timed 7-transition, as in our example.
The other is that, at a certain point, each replica has annexpially timedrt-transition back to one of
the preceding states of the replica itself, as shown beldtv awariant of our example:

T, Ly /(u+y)

a,A

T uy/(uty)
In this case, for each replica we view its return state asgogsrfinal state. In the figure above, for both
replicas the final state coincides with the initial state.

The new notion of replicated reducible computation mustdesompanied by an adjustment of the

way measureprobtime and multisetpbtm are calculated. Given a computatian of the form
T,A T,A T,A . . . .
P - m P> ’ M- —n>M P..1 that is reducible in the sense of DEf.13.2, the denominator of

thei-th fraction occurring in each of the two factors mbbtimgc) can indifferently berate(R, 7,Pu)

or rate (R ): those two values coincide becalde Py g, for alli = 1,...,n. In contrast, if the reducible
computationc is replicated, each of its replicas has a possibly diffecamttext and it is fundamental
thatrate(P, 7,Py) values are taken as denominators, so as to focustoamsitions. Since there can be
T-transitions also in the context, each destination of thegerates needs to be a specific sétcon-
taining only the states traversed by the replicas rather the generic sé®y. Taking into account only
T-transitions leading to states i#f ensuregontext independende this concurrent setting, which opens
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the way to the achievement of the saprebtimevalue for all the replicas of a reducible computation.
We are by now ready to provide the definition of replicatecucgiole computation together with the
revision of bothprobtimeand pbtm Since several reducible computations can depart fromdhees
state (see the second and the third pair of process terms. &.#)x in general we will have to handle
replicated trees of reducible computatiorsher than replicated individual reducible computations
In the sequel, we considen € N g process termBy, P, ..., Py € Py different from each other. We

suppose thalg ak—’Ak>M P«1 forall k=1,... m— 1, with B having a nonempty tree of computations
that are locally reducible for al = 1,...,m(sees; 1 ands; 4 in our example). This tree is formalized as
the seC{ of all the finite-length computations starting frdfasuch that each of them (i) is labeled with a
sequence of exponentially timedactions, (ii) traverses states that are all different i possible ex-
ception of the final state and one of its preceding states(i@nshares no transitions with computations
in Cy, forall k' # k.

We further suppose that the union@ff,C5,...,C}, can be partitioned into € N o groups of replicas
each consisting ain computations from all then sets, such that all the computations in the same group
have the same length and are labeled with the same sequergparfentially timedr-actions. As a

consequence, for al=1,..., mwe can write:
T,Ai1 T,Ai2 1'«,)\i,li
Cl ={ai=Ri1——mP2 M- MPGi1 ] 1<i<n}
whereP; 1 = R is the initial state ant] € N~ ¢ is the length of the computation for al=1,...,n.

Definition 4.2 The family of computationg’ = {C],C],...,Cf} is said to be generally reducible, or
g-reducible for short, iff eithem=1and for alli = 1,...,n:

o PjjcPusnforall j=1,....1;;
® Prijit1€PunuorPri11 =Py forsomej=1,...,[;

orm>1, withPyjj € Pynp foralli=1,...,nandj=1,...,[i whenm=1,andforalli =1,...,n:
e Forallk=1,.... m j=1,....l;,and<a,A> € Acty:

i . aA .
1. [Deviation from the replica] IR j —wm P’ with P’ # R j11, then:
a. [change of replica via context] eithetr= B ; j for somek’ =1,...,m;
b. [change of computation] & = B j» with a= T andA = Ay j_1 for somei’ =1,...,n
other than and somg’ =2,...,li;1.
aA
2. [Context preservation along the replica] ForkéH=1,...,m, it holds thath; j ——wm Py i j
aA .
iff Fk”'/ —M H<’7i7j/ for all j/ = l,...,|i.
3. [Stage preservation across replicas] Foria#: 1,...,n other thani and j’ = 2,...,l;,1,
. aA . aA
it holds thatP; j ——m P jo iff Bejj——m P j forallk =1,...,m.

e [Termination] One of the following holds:

- TAi ) +1

4. Whenever there exisfs). -1 € Rogsuch thaB; .1 ——wm P2 forallk=1,...,m, then
at least one of conditions 1, 2, and 3 above is not satisfidéy. 1 for somek' =1,...,m.

~ TAii+1

4. Thereis noj | 41 € Ryp such thaf 11 ——m P42 forallk=1,....m.

4. Rj1=hRforallk=1,...,mand somg =1,...,1;. n
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Some comments are now in order:

e In the case thatn = 1 and all the traversed states are fully unstable (see thkeféioption),
Def.[4.2 coincides with Def. 312 except for the fact that therfer considers a tree of computations
whilst the latter considers a single computation.

e The casem= 1 with P j € Pvny for everyi =1,...,nandj = 1,...,l; happens when all the
sequential process terms in parallel with the one origggtihe tree of locally reducible computa-
tions repeatedly execute a single action (selfloop tramgitithus causing no replica of the tree to
be formed. Both this case and the case 2 are subject to conditions 1, 2, 3, and 4.

e Condition 1 establishes that each transition deviating Be# R j+1) from the replica of the
considered computation &f7:

— either is a vertical transition of the context that pressty® current stage of the replicas and
hence causes the passage to the corresponding state aframqiica k' -~ k) or to the same
state of the same replick & k, meaning that one of the sequential process terms in plaralle
with the one originating the considered computation reggtexecutes a single action);

— or is a transition belonging to some other computatio#’Instarting from the same process
term P as the considered computation.

These two facts together imply the maximality®f, because taking into account deviating transi-
tions causes all replicas to be included. In addition, thegvent process terms like
<T,U>.(<T1,y>.0+<a,A>.0)+ <a,A>.0 and <T, %>.g+ <a,A>.0 — which do not con-
tain occurrences of parallel compositiam £ 1) and have no fully unstable states wreegt T —
from being deemed to be equivalent.

e Condition 2 is related to condition 1.a and ensures that dinéext of a replica is preserved along
each state traversed by the replica.

e Condition 3 is related to condition 1.b and ensures that emysition belonging neither to the
considered computation nor to its context (i.e., belongmgome other computation &7) is
present at the same stage of each replica of the considengulitation.

e The three variants of condition 4 establish the boundanhefreplicas of the considered com-
putation in a way that guarantees the maximality of the lemmjtthe replicas themselves under
() conditions 1, 2, and 3, (ii) the constraint that all of ithgansitions are labeled with exponen-
tially timed t-actions, (iii) and the constraint that all the traverseatest are different with the
possible exception of the final state and one of its precestiaigs.

Let initial (¢7) = {R | 1 < k < m} andfinal(¢") = {R;+1| 1 <k <m1<i<n} be the sets
of initial states and final states of the computation& In order to avoid interferences between the
computations irC{,C;,...,Cf, and the transitions belonging to the context of those coatjmuts, for
any computatiorty; in 4T we consider the following context-free measure:

l l
; N ' Ai,j ' 1
probtimey(Cy) = ,Dlm ' le)

where Z = {Rij | 1 <i" <n,2 <} <liy1}. In this way, all replicas of the same computation will
have the samprobtime; measure, as shown below.

Proposition 4.3 Whenevers" is g-reducible, then for ak,k' =1,..., mandi=1,...,n:
probtimey(cy;j) = probtimeg(cy ;) -
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Moreover, we replace the generic multipetm P, D) with the more specific multisetsbtmy (P, DN
final(¢")) for all R € initial (¢"). The latter multisets are based probtime; instead ofprobtime
as well as orreducomp; instead ofreducomp where reducomp(P, D N final(¢’7),t) is the multi-
set of computations identical to those@j that go fromR, to D Nfinal(4") and have average dura-
tion t. We point out that computations of length zero are not camei ag € R.o, so that whenever
R € initial (¢") nDNfinal(¢’"), then the calculation gibtm (R, D Nfinal(¢’")) does take into account
computations identical to those@f going fromF to itself.

Proposition 4.4 Whenevers" is g-reducible, then for ak, k' =1,... ,m:
pbtmy (P, final(¢")) = pbtmy (R, final(¢")) m

We are finally ready to introduce the revised definition of kviskarkovian bisimilarity.

Definition 4.5 An equivalence relatior® over Py is a g-weak Markovian bisimulation iff, whenever
(P1,P2) € A, then:

e For all visible action namea € Namg and equivalence classBsc Py / %:
rate(P,a,D) = rate(P,,a,D)

e If P; is not an initial state of any g-reducible family of compidgas, thenP; is not an initial state
of any g-reducible family of computations either, and fdregjuivalence classds € Py /%:
rate(P,, 7,D) = rate(P,, 7,D)

e If Py is an initial state of some g-reducible family of computatipthenP; is an initial state of
some g-reducible family of computations too, and for alegucible families of computatioris|
with Py € initial (47 ) there exists a g-reducible family of computatic#i§ with P € initial (¢7)
such that for all equivalence clasdes Py /%:

pbtmy (P, DNfinal(¢7)) = pbtmy (P, DNfinal(¢;))

G-weak Markovian bisimilarityp g is the largest g-weak Markovian bisimulation. [

Example 4.6 The process terms mentioned in each of the three cases[oBae3still related byeig g.
Note that each of those process terms is the only initiak sthia g-reducible family of computations
composed by a single computation (first case) or a singleagfreemputations (second and third case)
traversing only fully unstable states, thus= 1 and the “either” option of Def_412 applies. [

Example 4.7 Let us reconsider the two process terms at the beginning @.HExNow we have:
<aA>.<T,U>.<T,y>.0 ~mp g <a,A>.<T, %>.g
and:
<aA>.<T,u>.<T,y>.0[p<ad,A">.0 ~yg g <a,A>.<T, %}.QH@ <d,A">.0

because it holds that:

<T,u>.<1,y>.0lp<d,A">.0 ~yp g <T, %>.9H0 <a,A'>.0
In fact, fora # 1 the two process terms are the initial states of two g-redei¢#milies of computations
¢y and%;, respectively, each composed of two replicas — the first @véng context{<a',A’>} and
final state Qp <a&,A’>.0 and the second one having empty context and final st&8 © with:

pbtmy(<T,u>.<1,y>.0[p<&,A">.0,DNfinal(%y)) = {4+3i[}
pbtmy (<1, 22X >.0llo<a,A’>.0,DNfinal(%3)) = {4}

wheneveD contains the final state||g <a,A’>.0, as the way of calculatingrobtime; andpbtm does
not take the context into account.
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Fora' = 1, in addition to%] and%7 , the two process terms are the initial states of two furthesdyicible
families of computationg’|" and¢;’, respectively, each composed of two replicas of length &léab
with <a’,A’>. In this case:

pbtmy (<7, u>.<1,y>.0[p<a,A’>.0,DNfinal(¢]’)) = {|&}

pbtmy (<1, 12X >.0[lo<a,A">.0,DNfinal(63")) = { Al i

whenevemD contains the twe=yvi g-equivalent final states 7, u>.<7,y>.0[p0 and<t, 1>.0[00
The two divergent process terms at the end of(EX. 4.1 are faiedeby~p g because/l ;é Voi hence
they no longer result in a disruption of compositionalityemiplaced in the context|p <a,A’>.0. =

We conclude by showing that there exists a relationship éetweyg g and~ug only for process
terms that have no cycles of exponentially tinedctions. The reason of this limitation is thais g
imposes checks on those cycles that are not always perfdognegs, like, e.g., in the case of the two
divergent process terms réc <7,y1>.X and reX : <T,p>.X wherey, # .

Proposition 4.8 Let P, P, € Py be not divergent. Then:
Prcwg P = PL=uBg P> ]

4.2 Congruence Property

The investigation of the compositionality efyg ¢ with respect to MPC operators leads to results analo-
gous to those foremg [3], plus the achievement of congruence with respect tolleamposition.

Proposition 4.9 Let P, P, € Py. WhenevelP, ~yg g P2, then:
1. <a,A>.Pr~upg<a,A>.Pforall <a,A> c Acty.
2. Pi/H ~ug g P,/H for all H C Namg.
3. P1||sP~wmB g P2 ||sP andP||sPy ~ug g P||sP- for all SC Namg andP € Py. ]

The relation~yg g is not a congruence with respect to the alternative cornpnsu'iperator due to
fully unstable process terms: for instance it holds that u>.<1,y>.0 ~ug g <T HY ~ 0 whereas

)ty
<T,U>.<T,y>.0+ <a,A>.0%us g <T, 2L >.0+<a,A>.0. In fact, if it werea # T, then we would

’u+y
have:
rate(<t,u>.<1,y>.0+<a,A>.0,7,[0~ys,) = O
rate(<T, 5+V> 0+<aA>0,1,[0~ys,) = #75

otherwise fora= 1 the two process terms would be the initial states of two guné:de families of com-
putations, respectively, each composed of a single treerapatations with final state &d we would
have:

pbtmy(< T, u>.<7,y>.0+<a,A>.0,{0}) = {-£ Rx (ﬁJr%,) ax e
pbtmy (<7, ;7%5>.0+<aA>.0,{0}) = {| 73%3 ¥
The congruence violation with respect to the alternativepasition operator can be prevented by
adopting a construction analogous to the one used in [13lv&&ak bisimilarity over nondeterministic
process terms and adapted|in [3]reg. Therefore, we have to apply the exit rate equality check for

T-actions also to process terms that are initial states efdgaible families of computations, with the
equivalence classes to consider being the ones with regpegis .

Definition 4.10 Let P, P, € Py. We say thaP; is g-weakly Markovian bisimulation congruent B,
written Py ~yg g P>, iff for all action namesa € Nameand equivalence classBse Py /~wg g:
rate(P;,a,D) = rate(P»,a,D) n



M. Bernardo 133

Proposition 4.11 ~ug C ~mB,g C ~MmB.g: With ~vB g=~MB g OVer the set of process termsByj that
are not initial states of any g-reducible family of compiaas. [

Proposition 4.12 Let P, P, € Py and<a,A > € Acty. Then:
<a,A>.Pi~vg g <aA>.P < Piavg g P u

The relation~yg ¢ turns out to be the coarsest congruence — with respect toeatiierators of MPC
as well as recursion — containedaig g, as shown below.

Theorem 4.13 Let P, P, € Py. WhenevelP, ~yg g P», then:

1. <a,A>.PL>yg g <a,A>.Pforall <a,A> € Acty.

2. PL+P~vggP+PandP+ Py ~yg g P+ P forall P c Py.

3. Pi/H ~ug g P,/H for all H C Nams.

4. Py||sP ~mp g P2||sP andP||sPy ~ug g P||sP: for all SC Namg andP € Py. -

Theorem 4.14 Let Py, P> € Py. ThenPy ~yg g P iff P+ P~y g P.+ P forall P € Py. [ ]

With regard to recursion, we need to extengl g to open process terms in the usual way. Similar to
other congruence proofs for bisimulation equivalence wapect to recursion, here we rely on a notion
of g-weak Markovian bisimulation up teyg g inspired by the notion of Markovian bisimulation up to
~mg Of [5]. This notion differs from its nondeterministic coanpart used in [13] due to the necessity of
working with equivalence classes in this Markovian setting

Definition 4.15 Let P, P, € &%\ be process terms containing free occurrencdseN process vari-
ablesXy, ..., X € Var at most. We defin® ~yg g P iff PL{Q; — X | 1 <i <k} ~mp g P{Qi — X |
1<i<k}forall Qy,...,Q € £2%v containing no free occurrences of process variables. [

Definition 4.16 Let * denote the operation of transitive closure for relations.bidary relation.%
overPy is a g-weak Markovian bisimulation up tevg g iff, whenever(P;,P,) € 4, then:

e For all visible action names ¢ Namg and equivalence classBsc Py /(% U %~ U ~AMBg)
rate(Py,a,D) = rate(P;,a,D)

e If P, is not an initial state of any g-reducible family of compidas, thenP, is not
an initial state of any g-reducible family of computatiorither, and for all equivalence classes
De PM/(%U,@%LU %MBQ)JF:

rate(P, 7,D) = rate(P,, 7,D)

e If Py is an initial state of some g-reducible family of computasipthenP; is an initial state of
some g-reducible family of computations too, and for alegucible families of computatioris|
with Py € initial (47 ) there exists a g-reducible family of computatic#i§ with P € initial (¢7)
such that for all equivalence clas€es Py /(ZUZ U ~vpg) "

pbtmy (P, DNfinal(¢y)) = pbtmy (P, DNfinal(¢3 )) m

Proposition 4.17 Let % be a relation ovePy. If % is a g-weak Markovian bisimulation up teyg g,
then(Pl, Pz) € % impliesPy ~MB.g P, for all P, P, € Py. MOI’EOVEI’(%U B1U ’%MB,g)+ =~MBg- N

Theorem 4.18 Let P, P, € 2%\ be process terms containing free occurrencds®N process vari-
ablesXy, ..., X € Var at most. WheneveP, ~yg g P, then:
recXp:...:recXg:Pp ~vpg recXy:...:recXg: P, m
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4.3 Exactness at Steady State

We conclude by examining the exactness of the CTMC-leveleggdion induced byvg g and~yg g.

In general, a CTMC aggregation is said to be exact at steatly @esp. transient state) iff the steady-state
(resp. transient) probability of being in a macrostate ohggregated CTMC is the sum of the steady-
state (resp. transient) probabilities of being in each efdbnstituent microstates of the original CTMC

from which the aggregated one has been obtained. This pyapgglies the preservation of steady-state

(resp. transient) reward-based performance measuresseCidvMC models.

The aggregation to examine — which we call GW-lumpabilitthares with the one induced byyg
and~yp — called W-lumpability in[[3] — the characteristic of viewgmertain sequences of exponentially
timed t-actions to be equivalent to individual exponentially taheactions having the same average du-
ration and the same execution probability as the correspgretquences when the latter are considered
locally to the processes originating th8n@n the other hand, due to the idea of context embodied in the
notion of g-reducible family of computations and the conset capability of distinguishing between ac-
tion disabling and action interruption, a notable diffaremetween GW-lumpability and W-lumpability
is that the former may aggregate states also in the case oficent processes, while the latter cannot.

Reducing a computation formed by at least two exponenttatied 7-transitions to a single expo-
nentially timedt-transition with the same average duration amounts to appeding a hypoexponen-
tially (or Erlang) distributed random variable with an erpatially distributed random variable having
the same expected value. This implies that, in general, @Wshbility cannot preserve transient per-
formance measures, as was the case with W-lumpalility [3jwever, while W-lumpability at least
preserves transient properties expressed in terms of tha time to certain events, this is no longer the
case with GW-lumpability as we have seen at the beginningeof[&.1.

What turns out for GW-lumpability is that, similar to W-luralpility, it preserves steady-state per-
formance measures, provided that the states traversedybseplica of a reducible computation have
the same rewards and the transitions — belonging to theceeptito the context — departing from any
two traversed states have pairwise identical rewards. Mexvanlike W-lumpability, we have to confine
ourselves to processes in which synchronizations (if any)at take place right before the beginning of
computations that are reducible according to the “or” aptbDef.[4.2. This constraint comes from the
insensitivity conditions for generalized semi-Markov geeses mentioned in [12,8,/11].

Theorem 4.19 GW-lumpability is exact at steady state over every prooasa® < Py such that, for all
g-reducible families of computatior§™ in [Py with sizem> 2, or sizem= 1 and all the traversed
states being not fully unstable, no statdriitial (4’") is the target state of a transition [y arising
from the synchronization of two or more actions. [

Example 4.20 In order to illustrate the need for the constraint on synaizations in Thm[4.19, con-
sider the following two process terms:

PL = recX:<t,u>.<1,y>.<b,0>.X H{b} recY : <a,A>.<b,0>.Y

P, = recX:<r1, %>.<b,5>.x ll{by recy : <a,A>.<b,5>.Y
Observe thaP;, ~yg g P> and that[Pi]Jm and[P.]m are given by the two labeled multitransition systems
depicted at the beginning of SeCt.14.1, respectively, wittadditional transition labeled witkb, 5>
from the final state to the initial one. Inthe case that y=A = d =1 andd ® d = 9, it turns out that
the steady-state probability distribution @] is as follows:

1To be precise, since the Markov property of the original CTM®@ot preserved but the aggregated stochastic process is
still assumed to be a CTMC, it would be more appropriate tbthake aggregations pseudo-aggregatibns [14].
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msia) = & M2l = 15 msisl = 45
msial = & Msis] = 1 msie] = 13
whereas the steady-state probability distribution([fesf]y is as follows:
s = 4 Mol = 45
Mss] = & M4l = 15
Thus, the CTMC underlyingP,]Jm is not an exact aggregation of the CTMC underlyjiifg]m because:
msia]+msi2] # miS2a] s3] # TS2)
MSial+Msi5] # TS23 msie] # TS24

As can be noted, the transition fii*1Ju labeled with<b,d> arises from the synchronization of two
b-actions and its target state is the initial state of a comatpart belonging to a g-reducible family with
sizem= 2; hence, Thni. 4.19 does not apply.

In contrast, if we consider a synchronization-free variainthe two process terms above like for
instance:

Ps = recX:<t,u>.<1,y>.<bi,>.X|precY : <a,A >.<bp, &>.Y
P, = recX: <T,%>.<b1,51>.x lorecY : <a,A>.<bp,5>.Y
we have that fou = y= A = & = & = 1 the steady-state probability distribution %]y is:
mssa] = 3 M) = 3 msss] = 3§
mMseal = § mses] = & mses] = 3§
and the steady-state probability distribution f&%]m is:
Ms] = 2 Mo = 3
mss = 3 Msial = &
hence the CTMC underlyinffP4]m is an exact aggregation of the CTMC underlyifi] v because:
MSsa1]+MS32] = Ts4a] MSs3] = TSz
MSza] + MMSzs] = TSag] Msze| = TiSu4] ]

5 Conclusion

In this paper, we have introduceeyps g and ~yg g as variants of the weak Markovian bisimulation
equivalenceseyg and~yg proposed in([B], which suffer from a limited usefulness ftats space re-
duction purposes as they are not congruences with respéige tparallel composition operator. The
motivation behindkyg g and~yp g is thus that of retrieving full compositionality. Takingsipiration
from the idea of preserving the context bf [11], this has beemneved by enhancing the abstraction ca-
pability — with respect te=yg and~yg — when dealing with concurrent computations. The price o pa
for the resulting compositional abstraction capabilityhiat the exactness at steady state of the induced
CTMC-level aggregation does not hold for all the considgremtesses — as it was fefyg and~yg —

but only for sequential processes with abstraction anduwoeat processes whose synchronizations do
not take place right before the beginning of computationsetoeduced. Additionally, not even transient
properties expressed in terms of the mean time to certaimt&aee preserved in general.

With regard to[[11], where weak isomorphism has been studiedequivalences:yg g and~yg g
have been developed in the more liberal bisimulation fraotkwA more important novelty with respect
to weak isomorphism is that we have considered not only iddal sequences of exponentially timed
T-actions. In fact, we have addressed trees of exponentialld r-actions and we have established the
conditions under which such trees can be reduced — also iprésence of parallel composition — by



136 Weak Markovian Bisimulation Congruences and Exact CTM®@dlAggregations

locally preserving both the average duration and the ei@tprobability of their branches.

Another approach to abstracting frormactions in an exponentially timed setting comes froin [4],
where a variant of Markovian bisimilarity was defined tha¢cks for exit rate equality with respect to
all equivalence classes apart from the one including thegases under examination. Congruence and
axiomatization results were provided for the proposedvedgice, and a logical characterization based
on CSL was illustrated in [2]. However, unlikeys g and~yg g, Nothing was said about exactness.

As far as future work is concerned, we would like to invedegaquational and logical characteri-
zations of~yg g as well as conduct case studies for assessing its usefumpsactice (especially with
respect to the constraint on synchronizations that guaeansteady-state exactness). With regard to
verification issues, sinceryg C ~mp g for non-divergent process terms, we have that the equisalen
checking algorithm developed feryg in [3] can be exploited for compositional state space redact
with respect tavyg g, by applying it to each of the sequential processes compagearallel.
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