Tunable Quantum Neural Networks in the QPAC-Learning Framework

Viet Pham Ngoc
(Imperial College London)
David Tuckey
(Imperial College London)
Herbert Wiklicky
(Imperial College London)

In this paper, we investigate the performances of tunable quantum neural networks in the Quantum Probably Approximately Correct (QPAC) learning framework. Tunable neural networks are quantum circuits made of multi-controlled X gates. By tuning the set of controls these circuits are able to approximate any Boolean functions. This architecture is particularly suited to be used in the QPAC-learning framework as it can handle the superposition produced by the oracle. In order to tune the network so that it can approximate a target concept, we have devised and implemented an algorithm based on amplitude amplification. The numerical results show that this approach can efficiently learn concepts from a simple class.

In Stefano Gogioso and Matty Hoban: Proceedings 19th International Conference on Quantum Physics and Logic (QPL 2022), Wolfson College, Oxford, UK, 27 June - 1 July 2022, Electronic Proceedings in Theoretical Computer Science 394, pp. 221–235.
Published: 16th November 2023.

ArXived at: https://dx.doi.org/10.4204/EPTCS.394.13 bibtex PDF
References in reconstructed bibtex, XML and HTML format (approximated).
Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org