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We consider extensive games with perfect information with well-founded game trees and study the
problems of existence and of characterization of the sets of subgame perfect equilibria in these games.
We also provide such characterizations for two classes of these games in which subgame perfect
equilibria exist: two-player zero-sum games with, respectively, two and three outcomes.

1 Introduction

Research on strategic games assumes that players have to their disposal infinitely many strategies. This
allows one to view strategic games with mixed strategies as customary strategic games with infinitely
many strategies. This assumption is also used in a study of various standard examples, such as Cournot or
Bertrand competition, in which the players have to set the production level or the price of a product.

In contrast, the exposition of the standard results for the extensive games with perfect information
(from now, just ‘extensive games’) is usually limited to finite games. This restriction rules out a study of
various natural examples, for example infinite variants of the ultimatum game or some bargaining games,
see, e.g., [16]. In the first case the game has just two stages but the first player may have infinitely many
actions to choose from, while in the second case the game has an arbitrary, though finite, number of stages.
Such games are then analyzed separately, without taking into account general results.

The aim of this paper is to provide a systematic account of extensive games with perfect information
in a setting that only requires that the underlying game tree is well-founded (i.e., has no infinite paths).
We call such games well-founded1.

The standard tool to analyze finite extensive games is the concept of a subgame perfect equilibrium.
Their existence is established by means of the backward induction algorithm. In infinite well-founded
extensive games subgame perfect equilibria may fail to exist. Also one cannot resort to any version of this
algorithm since it will not terminate. In principle this could be taken care of by defining a joint strategy as
an eventual outcome of an infinite computation. However, for arbitrary well-founded games one would
have then to proceed by means of a transfinite induction, which raises a legitimate question whether such
a process can be called a computation.

Therefore, instead of trying to define such generalized computations we dispense with the backward
induction altogether and simply proceed by transfinite induction. This results in mathematical proofs
of existence that are not supported by any algorithm, but still, as illustrated by examples, the obtained
results can be used to compute the sets of subgame perfect equilibria in specific well-founded games and
to deduce their existence in special cases. Informally, transfinite induction analyzes the game tree ‘top

1Such games are sometimes called games with finite horizon (see, e.g., [15]). We decided to use instead the qualification
‘well-founded’ because ‘finite horizon’ is sometimes used to indicate that the game tree is of bounded depth, i.e, has a finite rank
(a concept introduced in the next section).
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down’, while the backward induction proceeds ’bottom up’ and consequently cannot be naturally applied
to infinite game trees.

Most results, though not all, are natural generalizations of the corresponding results for the case of
finite extensive games. Some of these results fail to hold for infinite games and some of the traditional
proofs for finite games, notably the ones involving the backward induction, have to be suitably modified.
In what follows we focus both on arbitrary well-founded games and on two-player zero-sum games with,
respectively, two and three outcomes.

In the literature we found only one paper in which well-founded games appear, namely [5]. The
authors provide using higher-order computability theory a formula that defines the set of subgame perfect
equilibria under an assumption that implies their existence, and apply it to determine a subgame perfect
equilibrium in an infinite three stage game. In several books various examples of infinite extensive games
are studied and various extensions of finite extensive games, for example games with chance moves, see,
e.g., [16], simultaneous moves, see, e.g., [15], or repeated extensive games, see [13], are introduced (not
to mention games with imperfect information). Also subgame perfect equilibria in games allowing infinite
plays have been studied, see, e.g., [8] and a more recent [10]. In [1] a maximally general definition of
an extensive form game is proposed that among others covers repeated games, differential games, and
stochastic games. In the proposed framework even immediate predecessors of an action may not exist
(like in continuous time interactive decisions examples). In our opinion the class of games considered
here merits attention as a first natural generalization to study.

In the next section we introduce the relevant concepts and provide natural examples of well-founded
extensive games. In Section 3 we establish existence of subgame perfect equilibria for some natural
classes of well-founded games and show how to apply a characterization result to compute the set of
subgame perfect equilibria for specific example games. Then, in Section 4 we consider two classes of
two-player well-founded games: win or lose games and chess-like games. As a stepping stone towards
characterizations of the sets of subgame perfect equilibria in these games we show that the well-known
result attributed to Zermelo [23] (see also [19]) about existence of winning strategies continues to hold for
well-founded games.

2 Preliminaries on extensive games

A tree is an acyclic directed connected graph, written as (V,E), where V is a non-empty set of nodes and
E is a possibly empty set of edges. In drawings the edges will be directed downwards.

An extensive game with perfect information (in short, just an extensive game) for n ≥ 1 players
consists of:

• a set of players {1, . . .,n},

• a game tree, which is a tree T := (V,E) with a turn function turn : V \Z→{1, . . .,n}, where Z is
the set of leaves of T ,

• the payoff functions pi : Z→R, for each player i.

We denote it by (T, turn, p1, . . ., pn).
The function turn determines at each non-leaf node which player should move. The edges of T

represent possible moves in the considered game, while for a node v ∈ V \ Z the set of its children
C(v) := {w | (v,w)∈ E} represents possible actions of player turn(v) at v. For a node u in T let T u denote
the subtree of T rooted at u.
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We say that an extensive game is finite, finite depth, infinite, or well-founded if, respectively, its
game tree is finite, finite depth, infinite, or well-founded. Recall that a tree is called well-founded if it has
no infinite paths (see, e.g., [21, page 224]).

Further, following [2], we say that an extensive game is without relevant ties if for all non-leaf nodes
u in T the function pi, where turn(u) = i, is injective on the leaves of T u. This is more general than saying
that a game is generic, which means that each pi is an injective function.

We shall often rely on the concept of a rank of a well-founded tree T . Recall that it is defined
inductively as follows, where v is the root of T :

rank(T ) :=

{
0 if T has one node
sup{rank(T u)+1 | u ∈C(v)} otherwise,

where sup(X) denotes the least ordinal larger than all ordinals in the set X . Transfinite induction will be
needed only to deal with games on the trees with rank > ω .

In the figures below we identify the actions with the labels we put on the edges and thus identify each
action with the corresponding move. For convenience we do not assume the labels to be unique, but it
will not lead to confusion. Further, we annotate the non-leaf nodes with the identity of the player whose
turn it is to move and the name of the node. Finally, we annotate each leaf node with the corresponding
sequence of the values of the pi functions.

Example 1 The following two-player game is called the Ultimatum game. Player 1 moves first and
claims a real number x ∈ [0,100], to be interpreted as a fraction of some good to be shared, leaving the
fraction 100−x for the other player. Player 2 either accepts this decision, the outcome is then (x,100−x),
or rejects it, the outcome is then (0,0). The game tree is depicted in Figure 1, where the action of player 1
is a number from the set [0,100], and the actions of player 2 are denoted by A and R. The resulting game
is infinite but is of finite depth. The rank of the game tree is 2.

1, u

2, 0

(0,100)

A

(0,0)

R

0

2, x

(x,100− x)

A

(0,0)

R

x

2, 100

(100,0)

A

(0,0)

R

100

· · · · · ·

Figure 1: The Ultimatum game

2

Example 2 Consider the following Bargaining game (without depreciation). Player 1 moves first by
selecting a natural number k ≥ 2. Such a choice is to be interpreted that he claims the fraction 1− 1

k of
some good to be shared, leaving the fraction 1

k for the other player. As long as player 1 selects k > 2,
player 2 asks for a better offer or rejects it. In the first case player 1 selects k−1. The game continues
until player 1 selects 2, i.e., claims 50 % of the good. At that moment player 2 either accepts this offer,
the outcome is then (50,50), or rejects it. All rejections result in the outcome (0,0). The game tree of this
game, depicted in Figure 2, has arbitrary long, though finite, branches, so this game is infinite but it is
well-founded. The rank of the game tree is ω . 2
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2,k

k

· · ·

· · ·· · ·

Figure 2: The Bargaining game

Below, given a two-player extensive game we denote the opponent of player i by −i instead of 3− i.

Example 3 We now construct a sequence of games G(i,α), where i ∈ {1,2} and α is an ordinal > 1, by
induction as follows:

• G(1,2) is the the ultimatum game from Example 1 and G(2,2) is its version with the roles of
players 1 and 2 reversed;

• G(i,α), where α > 2, is obtained as follows:

– its game tree is constructed by selecting a root v, taking the game trees of the games G(−i,β ),
where 1 < β < α and selecting their roots as the children of v,

– setting turn(v) = i.

So for example the root of the game tree of G(i,3) has one child, namely the root of the game tree
of G(−i,2), the root of the game tree of G(i,4) has two children, namely the roots of the game trees of
G(−i,3) and G(−i,2), etc. Note that the rank of the game tree of G(i,α) is α . 2

The class of endogenous games studied in [9] form another example of well-founded extensive games.
These games are played in two stages. In the first stage the players are involved in pre-play negotiations
that essentially fix the payoff functions and in the second stage they choose their strategies. The resulting
game is infinite due to the pre-play negotiations, while the rank of the game tree is 2.

Note that by König’s lemma [11] every finitely branching well-founded extensive games is finite.
Consequently, interesting well-founded extensive games necessarily have infinite branching.

For an extensive game G := (T, turn, p1, . . ., pn) let Vi := {v ∈V \Z | turn(v) = i}. So Vi is the set of
nodes at which player i moves. A strategy for player i is a function si : Vi→V , such that (v,si(v)) ∈ E for
all v ∈Vi. We denote the set of strategies of player i by Si.

Let S = S1×·· ·×Sn. We call each element s ∈ S a joint strategy, denote the ith element of s by si,
and abbreviate the sequence (s j) j 6=i to s−i. We write (s′i,s−i) to denote the joint strategy in which player
i’s strategy is s′i and for all j 6= i, player j’s strategy is s j. Occasionally we write (si,s−i) instead of s.
Finally, we abbreviate the Cartesian product × j 6=iS j to S−i. So in the degenerate situation when the game
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tree consists of just one node, each strategy is the empty function, denoted by /0, and there is only one
joint strategy, namely the n-tuple of these functions. Each joint strategy assigns a unique descendant to
every node in V \Z. In fact, we can identify joint strategies with such assignments.

From now on the above notation will be used in the context of any considered extensive game G. In
particular Si will always denote the set of strategies of player i.

Each joint strategy s = (s1, . . .,sn) determines a rooted path play(s) := (v1, . . .,vm) in T defined
inductively as follows:

• v1 is the root of T ,

• if vk 6∈ Z, then vk+1 := si(vk), where turn(vk) = i.

So when the game tree consists of just one node, v, we have play(s) = v. Informally, given a joint strategy
s, we can view play(s) as the resulting play of the game.

Suppose now that the extensive game is well-founded. Then for each joint strategy s the rooted path
play(s) is finite. Denote by leaf (s) the last element of play(s). We call (p1(lea f (s)), . . ., pn(lea f (s))) the
outcome of the game G when each player i pursues his strategy si and abbreviate it as p(lea f (s)). We
call two joint strategies s and t payoff equivalent if p(lea f (s)) = p(lea f (t)).

We say that a strategy si of player i a best response to a joint strategy s−i of his opponents if for all
s′i ∈ Si, pi(lea f (s))≥ pi(lea f (s′i,s−i)). Next, we call a joint strategy s a Nash equilibrium if each si is a
best response to s−i, that is, if

∀i ∈ {1, . . . ,n},∀s′i ∈ Si, pi(lea f (si,s−i))≥ pi(lea f (s′i,s−i)).

Example 4 Let us return to the Ultimatum game from Example 1. Each strategy for player 1 is a number,
respectively from [0,100], while each strategy for player 2 assigns to every such number x either A or R.

It is easy to check that each Nash equilibrium is of the form (100, always R), with the outcome
(100,0), or (x,s2) with s2(x) = A and s2(y) = R for y > x, where x,y ∈ [0,100], with the outcome
(x,100− x). 2

Finally, we recall the notion of a subgame perfect equilibrium due to Selten [20](see also section 6.2
in [15]), though now defined for the larger class of well-founded games.

The subgame of G rooted at the node w, denoted by Gw, is defined as follows:

• its set of players is {1, . . .,n},

• its tree is T w,

• its turn and payoff functions are the restrictions of the corresponding functions of G to the nodes of
T w.

Note that some players may ‘drop out’ in Gw, in the sense that at no node of T w it is their turn to move.
Still, to keep the notation simple, it is convenient to admit in Gw all original players in G.

Each strategy si of player i in G uniquely determines his strategy sw
i in Gw. Given a joint strategy

s = (s1, . . .,sn) of G we denote by sw the joint strategy (sw
1 , . . .,s

w
n ) in Gw. Further, we denote by Sw

i the set
of strategies of player i in the subgame Gw and by Sw the set of joint strategies in this subgame.

Suppose now the extensive game G is well-founded. Then the notion of a Nash equilibrium is well-
defined. A joint strategy s of G is called a subgame perfect equilibrium in G if for each node w of T , the
joint strategy sw of Gw is a Nash equilibrium in Gw. Informally s is subgame perfect equilibrium in G if it
induces a Nash equilibrium in every subgame of G.
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Figure 3: The subgame perfect equilibrium in the Ultimatum game

Example 5 Return now to the Ultimatum game from Example 1. It is easy to check that it has exactly
one subgame equilibrium, depicted in Figure 3 by thick lines.

Note that even though the rank of the game tree is 2, the customary backward induction cannot be
applied here to compute this subgame equilibrium. Indeed, to deal with the root node the algorithm has to
deal first with infinitely many nodes at which player 2 moves, which leads to divergence. 2

An analysis of the subgame perfect equilibria in the games from Examples 2 and 3 is more involved
and will be provided in the next section using a characterization of the set of subgame perfect equilibria of
a well-founded extensive game.

3 Subgame perfect equilibria in well-founded games

In general subgame perfect equilibria may not exist in well-founded games. As an example take the
modification of the Ultimatum game from Example 1 in which instead of [0,100] one considers the open
interval (0,100). In this section we establish existence of subgame perfect equilibria in some natural
classes of well-founded games. This will directly follow from a characterization of the sets of subgame
perfect equilibria in such games.

We begin by stating a preparatory lemma, called the ‘one deviation property’ in [15]. To keep the
paper self-contained we include in the Appendix the proof. It is more detailed than the one given in [15].

Lemma 6 Let G be a well-founded extensive game over the game tree T . A joint strategy s is a subgame
perfect equilibrium in G iff for all non-leaf nodes u in T and all y ∈C(u)

• pi(leaf (sx))≥ pi(leaf (sy)), where i = turn(u) and si(u) = x.

Corollary 7 Let G be a well-founded extensive game over the game tree T with the root v. A joint strategy
s is a subgame perfect equilibrium in G iff for all u ∈C(v)

• pi(leaf (sw))≥ pi(leaf (su)), where i = turn(v) and si(v) = w,

• su is a subgame perfect equilibrium in the subgame Gu.

Intuitively, the first condition states that among the subgames rooted at the children of the root v, the one
determined by the first move in the game G yields the maximal outcome for the player who moved. Recall
that for a function f : X→Y (with X non-empty), argmaxx∈X f (x) := {y∈X | f (y)=maxx∈X f (x)}. Using
this notation this condition can be reformulated as: si(v) ∈ argmaxu∈C(v)pi(leaf (su)), where i = turn(v).
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Proof. If C(v) = /0, the claim is vacuously true. Otherwise consider any u ∈C(v). By Lemma 6 su is
a subgame perfect equilibrium in Gu iff for all non-leaf nodes y in T u and z ∈ C(y), pi(leaf ((su)x) ≥
pi(leaf ((su)z), where i = turn(y) and su

i (y) = x.
Since (su)x = sx and (su)z = sz, the last statement is equivalent to the statement that the inequality in

Lemma 6 holds for all non-leaf nodes y in T u and z ∈C(y). The conclusion now follows by Lemma 6. �

The above corollary allows us to characterize inductively the set of subgame perfect equilibria in each
well-founded extensive game.

Consider a well-founded extensive game G with the root v and suppose C(v) 6= /0. Consider the
subgames Gw, where w ∈C(v), and a function f that assigns to each sequence t of joint strategies in these
subgames a child of v. Then each pair of t and f determines a joint strategy in G that we denote by ( f , t).

Recall that by Sw we denote the set of joint strategies in the subgame Gw. Given subsets Uw of Sw for
w ∈C(v) and a set of functions F from ×w∈C(v)Uw to C(v), we denote by [F,×w∈C(v)Uw] the set of joint
strategies in G defined by

[F,×w∈C(v)U
w] :=

{
{( /0, . . ., /0)} if C(v) = /0
{( f , t) | f ∈ F, t ∈ ×w∈C(v)Uw} otherwise

In the first case ( /0, . . ., /0) stands for the joint strategy that consists of the n-tuple of the empty strategies.
Note that when C(v) 6= /0 if any of the sets Uw or F is empty, then so is [F,×w∈C(v)Uw]. Further, we denote
the set of subgame perfect equilibria in G by SPE(G).
Theorem 8 Consider a well-founded extensive game G with the root v and let i = turn(v). Then

SPE(G) = [F,×w∈C(v)SPE(Gw)],

where if C(v) 6= /0 then F = { f | ∀t ∈ ×w∈C(v) SPE(Gw) f (t) ∈ argmaxw∈C(v)pi(leaf (tw))}.
In particular, if the set argmaxw∈C(v)pi(leaf (tw)) is empty, then F = /0 and hence SPE(G) = /0. Intu-

itively, each function f ∈ F , given a sequence of subgame perfect equilibria in the subgames rooted at the
children of the root v, selects a root of the subgame in which the outcome in the equilibrium is maximal
for the player who moves at v.

Proof of Theorem 8. If C(v) = /0, then ( /0, . . ., /0) is a unique subgame perfect equilibrium, so the claim
holds.

If C(v) 6= /0, then by Corollary 7 every subgame perfect equilibrium in the game G is of the form
( f , t), where for all w ∈C(v), tw is a subgame perfect equilibrium in Gw and for some w ∈C(v) we have
f (t) = w and pi(leaf (sw))≥ pi(leaf (su)) for all u ∈C(v). 2

Corollary 9 Every well-founded extensive game with finitely many outcomes has a subgame perfect
equilibrium.

Proof. The claim follows from Theorem 8 by induction on the rank of the game tree and the observation
that for every function g : X → Y with a finite range the set argmaxx∈X g(x) is non-empty. �

The above result can be generalized to some games with infinitely many outcomes. An example is a
game in which for each player the set of outcomes is either finite or equals the set of negative integers.
More generally, consider a well-founded extensive game in which for each player the set of outcomes is a
reverse well-ordered set, i.e., every subset of this set has a greatest element. Then Theorem 8 implies that
the game has a subgame perfect equilibrium.
Corollary 10 Every well-founded extensive game without relevant ties has at most one subgame perfect
equilibrium.
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Proof. If a game is without relevant ties, then so is every subgame of it. This allows us to proceed by
induction on the rank of the game tree. For game trees of rank 0 the claim clearly holds. Suppose that it
holds for all well-founded extensive games without relevant ties with the game trees of rank smaller than
some ordinal α > 0. Consider such a game with game tree of rank α and rooted at v. Let i = turn(v).

By the induction hypothesis for each w ∈C(v) the set SPE(Gw) has at most one element. If one of
these sets is empty, then so is SPE(G).

So suppose that each SPE(Gw) is a singleton set. Then so is×w∈C(v)SPE(Gw). Let×w∈C(v)SPE(Gw)=

{t}. Then for different w,w′ ∈C(v), leaf (tw) and leaf (tw′) are different leaves of the game tree of G, so
by the assumption about the game pi(leaf (tw)) 6= pi(leaf (tw′)), since i = turn(v).

This means that the function g : C(v)→ R defined by g(w) := pi(leaf (tw)) is injective. Consequently
the set argmaxw∈C(v)pi(leaf (tw)) has at most one element and hence the same successively holds for the
sets F and SPE(G). �

In particular, every generic well-founded extensive game with finitely many outcomes has a unique
subgame perfect equilibrium. We now show how Theorem 8 can be used to reason about subgame perfect
equilibria in specific extensive games.

Example 11 Consider the Bargaining game G from Example 2. Denote by G(k) the game in which
player 1 first selects the number k. The inductive structure of these games is depicted in Figure 4, where
the actions of player 2 are B (‘make a better offer’) or A and R, as in Example 1.

1

2

(50,50)

A

(0,0)

R

1

2

1

B

(0,0)

R

G(k−1)

Figure 4: The games G(2) and G(k) for k > 2

It is easy to prove by induction using Theorem 8 or simply by the backward induction (the presentation
of which we omit) that each game G(k), where k ≥ 2, has a unique subgame perfect equilibrium with the
outcome (50,50).

Children of the root of the game tree of G are the roots of the game trees of G(k), where k ≥ 2. So for
the game G the set argmaxw∈C(v)pi(leaf (tw)) referred to in Theorem 8 has exactly one element, 50. Hence
Theorem 8 implies that G has a subgame perfect equilibrium, that the outcome in each of them is (50,50),
and that for each k ≥ 2 there is a unique subgame perfect equilibrium in which player 1 first selects k. 2

Example 12 Consider now the games G(i,α), where i ∈ {1,2} and α is an ordinal > 1 from Example
3. We noticed in Example 5 that the game G(1,2) has a unique subgame perfect equilibrium with the
outcome (100,0). By symmetry the game G(2,2) has a unique subgame perfect equilibrium with the
outcome (0,100). The root of the game tree G(i,3) has one child, which is the root of the game tree of
G(−i,2). Consequently G(i,3) has a unique subgame perfect equilibrium with the outcome (0,100) for
i = 1 and (100,0) for i = 2.
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Using these observations we now show that for i ∈ {1,2} and ordinals α > 3 the game G(i,α) has a
subgame perfect equilibrium and the outcomes in all these equilibria are all (100,0) for i = 1 and (0,100)
for i = 2. We proceed by induction. Consider a game G(1,α) with α > 3 and assume the claim holds for
all β with 3≤ β < α . The root of the game tree has as children the roots of the game trees of G(2,β ),
where 1 < β < α .

By the induction hypothesis all these games except G(2,3) have subgame perfect equilibria with
the outcomes (0,100). For the game G(2,3), as just noted, the outcome in the unique subgame perfect
equilibrium is (100,0). So for the game G(1,α) the set argmaxw∈C(v)pi(leaf (tw)) referred to in Theorem
8 has exactly one element, 100. Using this theorem we conclude that the game G(1,α) has a subgame
perfect equilibrium and that the outcome in each equilibrium is (100,0). A symmetric claim, referring to
(0,100) instead, holds for each game G(2,α) with α > 3.

Using Theorem 8 we conclude that each G(i,α) for α > 4 has multiple subgame perfect equilibria. 2

Next, we establish a result showing that for a class of well-founded extensive games all subgame
perfect equilibria are payoff equivalent. The following condition was introduced in [17]:

∀i ∈ {1, . . . ,n}∀s, t ∈ S [pi(leaf (s)) = pi(leaf (t))→ p(leaf (s)) = p(leaf (t))]. (1)

This condition is in particular satisfied by the two-player well-founded extensive games that are
strictly competitive, which means that

∀i ∈ {1,2} ∀s,s′ ∈ S pi(leaf (s))≥ pi(leaf (s′)) iff p−i(leaf (s))≤ p−i(leaf (s′)).

(To see it transpose i and −i and conjoin both equivalences.)

Theorem 13 In every well-founded extensive game that satisfies condition (1) all subgame perfect
equilibria are payoff equivalent.

Proof. First we prove the following claim.

Claim. If a well-founded extensive game satisfies condition (1), then so does every subgame of it.

Proof. Let G be a well-founded extensive game that satisfies condition (1). Consider any subgame Gw of
G. Suppose that for some player i and joint strategies s′ and t ′ in Gw we have pi(leaf (s′)) = pi(leaf (t ′)).
Take some joint strategies s and t in G such that leaf (s) = leaf (s′), leaf (t) = leaf (t ′), sw = s′ and
tw = t ′. Then pi(leaf (s)) = pi(leaf (t)), so by condition (1) p(leaf (s)) = p(leaf (t)) and consequently
p(leaf (s′)) = p(leaf (t ′)). 2

We now proceed by induction on the rank of the game tree. For game trees of rank 0 the claim
obviously holds. Suppose the claim holds for all well-founded extensive games whose game tree is of
rank smaller than some ordinal α > 0. Consider a well-founded game G = (T, turn, p1, . . ., pn) over a
game tree of rank α with the root v. Take two subgame perfect equilibria s and t in G.

If path(s) = path(t), then p(leaf (s)) = p(leaf (t)). Otherwise take the first non-leaf node u lying on
path(s) such that si(u) 6= ti(u), where i = turn(u). Let si(u) = x and ti(u) = y.

Both sy and ty are subgame perfect equilibria in the subgame Gy. By the Claim the game Gy satisfies
condition (1), so by the induction hypothesis sy and ty are payoff equivalent in Gy. We thus have

pi(leaf (s)) = pi(leaf (sx))≥ pi(leaf (sy)) = pi(leaf (ty)) = pi(leaf (t)),

where the inequality holds by Lemma 6. Analogously pi(leaf (t)) ≥ pi(leaf (s)), so pi(leaf (s)) =
pi(leaf (t)) and hence by condition (1) p(leaf (s)) = p(leaf (t)). �
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For finite extensive games this result was stated in [15, page 100] as Exercise 100.2. The most natural
proof makes use of the backward induction. For infinite games a different proof is needed.

We say that a well-founded extensive game (T, turn, p1, . . ., pn) satisfies the transference of decision-
maker indifference (TDI) condition if: ∀i ∈ {1, . . . ,n}∀ri, ti ∈ Si ∀s−i ∈ S−i,

pi(leaf (ri,s−i)) = pi(leaf (ti,s−i))→ p(leaf (ri,s−i)) = p(leaf (ti,s−i)).

Informally, this condition states that whenever for some player i two of his strategies ri and ti are indifferent
w.r.t. some joint strategy s−i of the other players then this indifference extends to all players.

Clearly, condition (1) implies the TDI condition. The TDI condition was introduced in [14], the
results of which imply that in every finite extensive game with perfect information that satisfies the TDI
condition all subgame perfect equilibria are payoff equivalent. We conjecture that this result extends to
well-founded extensive games.

4 Win or lose and chess-like games

In this section we characterize subgame perfect equilibria of two-player zero-sum well-founded extensive
games with, respectively, two and three outcomes. By Corollary 9 each of these games has a subgame
perfect equilibrium. Below we consider the outcomes (1,−1), (0,0), and (−1,1), but the obtained results
hold with the same proofs for arbitrary outcomes as long as the game remains zero-sum.

A two-player extensive game is called a win or lose game if the only possible outcomes are (1,−1)
and (−1,1), with 1 associated with winning and 0 with losing. Given a well-founded win or lose game G
we call a strategy si of player i a winning strategy if ∀s−i ∈ S−i pi(leaf (si,s−i)) = 1. Below we denote
the (possibly empty) set of winning strategies of player i in G by wini(G).

A classic result, attributed to Zermelo [23], implies that in finite win or lose games one of the players
has a winning strategy. This result also holds for arbitrary well-founded games.

Theorem 14 Let G be a well-founded win or lose game. For all players i we have wini(G) 6= /0 iff
win−i(G) = /0.

Proof. We have the following sequences of equivalences, where i = turn(v):
si ∈ wini(G)

iff { the definition of wini(G) }
for all s−i ∈ S−i, pi(leaf (si,s−i)) = 1

iff { i = turn(v) }
for all sw

−i ∈ Sw
−i, pi(leaf (sw

i ,s
w
−i)) = 1, where w = si(v)

iff { definition of a winning strategy }
sw

i ∈ wini(Gw), where w = si(v).

and
s−i ∈ win−i(G)

iff { the definition of win−i(G) }
for all si ∈ Si, p−i(leaf (si,s−i)) = 1

iff { i = turn(v) }
for all w ∈C(v) and sw

i ∈ Sw
i , p−i(leaf (sw

i ,s
w
−i)) = 1

iff { definition of a winning strategy }
for all w ∈C(v), sw

−i ∈ win−i(Gw).
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We now prove the claim by induction on the rank of the game tree. For game trees of rank 0 the claim
clearly holds. Suppose that it holds for all well-founded win or lose games with game trees of rank smaller
than some ordinal α > 0 and consider a win or lose game G with the well-founded game tree of rank α

and rooted at v. Let i = turn(v).
By the induction hypothesis for all w ∈C(v), wini(Gw) 6= /0 iff win−i(Gw) = /0, so the above equiva-

lences imply the following string of equivalences:

wini(G) 6= /0 iff for some w ∈C(v), wini(Gw) 6= /0 iff for some w ∈C(v), winw
−i(G) = /0 iff win−i(G) = /0

and hence also win−i(G) 6= /0 iff wini(G) = /0. �

From Corollary 9 we know that every well-founded win or lose game has a subgame perfect equi-
librium, thus in particular a Nash equilibrium. The following result clarifies the relation between Nash
equilibria and winning strategies. We denote the set of Nash equilibria in an extensive game G by NE(G).

Corollary 15 Consider a well-founded win or lose game G. For some player i, NE(G) = wini(G)×S−i.

Proof. By Theorem 14 win1(G) 6= /0 or win2(G) 6= /0. Suppose without loss of generality that win1(G) 6=
/0.

(⇒ ) Let (s1,s2) be a Nash equilibrium and t1 be a winning strategy for player 1. Then we have
p1(leaf (s1,s2)) ≥ p1(leaf (t1,s2)) = 1 and hence p2(leaf (s1,s2)) = −1. If s1 is not a winning strategy
for player 1, then for some player 2 strategy t2 we have p1(leaf (s1, t2)) =−1, i.e., p2(leaf (s1, t2)) = 1 >
p2(leaf (s1,s2)), which contradicts the fact that (s1,s2) is a Nash equilibrium. So NE(G)⊆win1(G)×S2.

(⇐ ) Take a winning strategy s1 for player 1. Then for all strategies t1 of player 1 and s2 and t2 of player 2,

p1(leaf (t1,s2))≤ p1(leaf (s1,s2)) = p1(leaf (s1, t2)).

So (s1,s2) is a Nash equilibrium. Hence win1(G)×S2⊆NE(G). �

In general the sets of subgame perfect equilibria and Nash equilibria differ, so we cannot replace
in the above result NE(G) by SPE(G). However, the above corollary directly implies the following
characterization of subgame perfect equilibria.

Corollary 16 Let G be a well-founded win or lose game on a game tree (V,E) with the set of leaves Z.
Then SPE(G) = {s ∈ S | ∀w ∈V \Z ∃i [sw ∈ wini(Gw)×Sw

−i]}.

It is easy to see that one cannot reverse here the order of the quantifiers.

We now consider a related class of games often called chess-like games. These are two-player well-
founded extensive games in which the only possible outcomes are (1,−1), (0,0), and (−1,1), with 0
interpreted as a draw. We say that a strategy si of player i in such a game guarantees him at least a draw
if

∀s−i ∈ S−i pi(lea f (si,s−i))≥ 0,

and denote the (possibly empty) set of such strategies by drawi(G).
We now prove the following result for well-founded chess-like games. The set wini(G) is defined as

above.

Theorem 17 In every well-founded chess-like game G

win1(G) 6= /0 or win2(G) 6= /0 or (draw1(G) 6= /0 and draw2(G) 6= /0).
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It states that in every chess-like game either one of the players has a winning strategy or each player
has a strategy that guarantees him at least a draw. These three alternatives are mutually exclusive, since
for all i ∈ {1,2}, wini(G) 6= /0 implies both win−i(G) = /0 and draw−i(G) = /0.

Proof. We introduce the following abbreviations:

• A for win1(G) 6= /0,

• B for draw2(G) 6= /0,

• C for win2(G) 6= /0,

• D for draw1(G) 6= /0.

Let G1 and G2 be the modifications of G in which each outcome (0,0) is replaced for G1 by (−1,1)
and for G2 by (1,−1). Then win1(G1) = win1(G), win2(G1) = draw2(G), win1(G2) = draw1(G), and
win2(G2) = win2(G).

Hence by Theorem 14 applied to the games G1 and G2 we have A∨B and C∨D, so (A∧C)∨ (A∧
D)∨ (B∧C)∨ (B∧D), which implies A∨C∨ (B∧D), since ¬(A∧C), (A∧D)≡ A, and (B∧C)≡C. �

For finite games, the above result is formulated in [22, page 125]. The proof first uses backward
induction (apparently the first use of it in the literature on game theory) to establish the existence of a
Nash equilibrium. Subsequently, (what is now called) the Minimax theorem is invoked to conclude that
the payoff to the first player (and hence the second, as well) in any Nash equilibrium is unique. Finally, it
is observed that each possible payoff value corresponds to one of the three disjuncts in the above theorem.
The above theorem clarifies that this result holds for well-founded games as well, and that it can be proved
in a simple way, without the use of backward induction.

In [6] a proof of this result is provided for chess-like games in which infinite plays, interpreted as
draw, are allowed. The proof does not rely on backward induction and is also valid for well-founded
chess-like games.

Corollary 18 Consider a well-founded chess-like game G. For some player i

NE(G) = wini(G)×S−i or NE(G) = drawi(G)×draw−i(G).

Proof. Consider the games G1 and G2 from the proof of Theorem 17. We noticed there that win1(G1) =
win1(G), win2(G1) = draw2(G), win1(G2) = draw1(G), and win2(G2) = win2(G).

So if win1(G) 6= /0, then by Corollary 15 applied to the game G1 we get NE(G1) = win1(G)×S2, and
if win2(G) 6= /0, then by Corollary 15 applied to the game G2 we get NE(G2) = S1×win2(G).

Suppose now that for both players i, wini(G) = /0. Then both win1(G1) = /0 and win2(G2) = /0, so
by Corollary 15 applied to the games G2 and G1 we get both NE(G2) = draw1(G)×S2 and NE(G1) =
S1×draw2(G). This implies NE(G1)∩NE(G2) = draw1(G)×draw2(G).

Further, it is easy to see that NE(G)⊆NE(G1) and NE(G)⊆NE(G2). Thus we have established that
for some player i

NE(G)⊆wini(G)×S−i or NE(G)⊆drawi(G)×draw−i(G).

To complete the proof, let pi denote the payoff function of player i in the game G. Suppose there exists
a player i such that wini(G) 6= /0 and let s ∈ wini(G)×S−i. By the definition of wini(G) for all s′−i we have
pi(lea f (si,s′−i)) = 1. Hence, since G is a zero-sum game, for all s′−i we have p−i(lea f (si,s′−i)) = −1.
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Since 1 is a maximum payoff for all s′i we also have pi(lea f (s))≥ pi(lea f (s′i,s−i)). This shows that s is a
Nash equilibrium of G.

Suppose now that for all players i, wini(G) = /0. Fix some i∈ {1,2} and let s∈ drawi(G)×draw−i(G).
By the definition of the sets drawi(G)

• for all s′−i, pi(lea f (si,s′−i))≥ 0 and

• for all s′i, p−i(lea f (s′i,s−i))≥ 0.

Hence, since G is a zero-sum game, p(lea f (s)) = (0,0) and

• for all s′−i, p−i(lea f (si,s′−i))≤ 0 and

• for all s′i, pi(lea f (s′i,s−i))≤ 0.

This means that s is a Nash equilibrium of G. �

Corollary 19 Consider a well-founded chess-like game G on a game tree (V,E) with the set of leaves Z.
Then

SPE(G) = {s ∈ S | ∀w ∈V \Z ∃i [sw ∈ (wini(Gw)×Sw
−i)∪ (drawi(Gw)×draw−i(Gw))]}.

5 Conclusions

In this paper we studied well-founded extensive games with perfect information. We focused on the
existence and structural characterization of the sets of subgame perfect equilibria. We also provided
such characterizations for two classes of two-player zero-sum games: win or lose games and chess-like
games. It will be interesting to consider in this setting other notions and solution concepts that have been
well-studied in finite games.

One of them is weak dominance. For finite games, its relation to backward induction was studied in
[14]. The authors showed that for finite game that satisfy the TDI condition from Section 3 the elimination
of weakly dominated strategies is order independent and is guaranteed to solve the game. The author of
[6, 7] studied zero-sum extensive games and showed that every such game with finitely many outcomes
can be solved by iterated elimination of weakly dominated strategies.

The definition of weak dominance applies to well-founded extensive games, as well, but the resulting
dynamics may be different. For instance, it is possible that the iterated elimination of weakly dominated
strategies can then result in empty strategy sets for all or for some players. Also, it may happen that
the elimination process has to be iterated over ordinals larger than ω . It would be interesting to identify
subclasses of well-founded extensive games which can be solved by the iterated elimination of weakly
dominated strategies and for which it is order independent.

Another direction is a study of the dynamics of strategy improvement in terms of best (or better)
response updates. For finite extensive games, the relation between the improvement dynamics and
Nash equilibria was analyzed in [12, 4]. For restricted classes of infinite games of perfect information,
improvement dynamics were studied in [3, 18]. It is an interesting question how the improvement
dynamics and Nash and subgame perfect equilibria relate in well-founded extensive games.
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[11] D. König (1927): Über eine Schlußweise aus dem Endlichen ins Unendliche. Acta Litt. Ac. Sci. 3, pp.
121–130.

[12] N.S. Kukushkin (2002): Perfect information and potential games. Games and Economic Behavior 38(2), pp.
306–317, doi:10.1006/game.2001.0859.

[13] G.J. Mailath & L. Samuelson (2006): Repeated Games and Reputation: Long-Run Relationships. Oxford
University Press, doi:10.1093/acprof:oso/9780195300796.001.0001.

[14] L.M. Marx & J.M. Swinkels (1997): Order Independence for Iterated Weak Dominance. Games and Economic
Behaviour 18, pp. 219–245, doi:10.1006/game.1997.0525.

[15] M.J. Osborne & A. Rubinstein (1994): A Course in Game Theory. The MIT Press.

[16] K. Ritzberger (2001): Foundations of Non-cooperative Game Theory. Oxford University Press, Oxford, UK.

[17] J.C. Rochet (1980): Selection on an Unique Equilibrium Value for Extensive Games with Perfect Information.
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Appendix

Lemma 6 Let G be a well-founded extensive game over the game tree T . A joint strategy s is a subgame
perfect equilibrium in G iff for all non-leaf nodes u in T and all y ∈C(u)

• pi(leaf (sx))≥ pi(leaf (sy)), where i = turn(u) and si(u) = x.

Proof.
(⇒ ) Suppose s is a subgame perfect equilibrium in G. Consider a non-leaf node u in T . Let i = turn(u),
x = si(u) and take some y ∈C(u). Let tu

i be the strategy obtained from su
i by assigning the node y to u.

We now have pi(leaf (sx)) = pi(leaf (su)) ≥ pi(leaf (tu
i ,s

u
−i)) = pi(leaf (sy)), where the inequality

holds by since su a Nash equilibrium in Gu.

(⇐ ) We proceed by induction on the rank of the game tree of G. For game trees of rank 0 the induction
hypothesis is vacuously true. Suppose the claim holds for all well-founded extensive games whose game
tree is of rank smaller than some ordinal α > 0. Consider a well-founded game G over a game tree T of
rank α with the root v.

Consider any node u in T such that u 6= v. (Since α > 0, such a node u exists.) Then rank(T u) is
smaller than α and for all nodes w in T u we have (su)w = sw. By the induction hypothesis su is a subgame
perfect equilibrium in Gu, so a fortiori it is a Nash equilibrium in Gu. It remains to prove that s is a Nash
equilibrium in G.

Suppose not. Then there exists player i and ti ∈ Si such that for t = (ti,s−i) we have pi(leaf (s)) <
pi(leaf (t)). Recall that every joint strategy s′ in G defines a rooted path play(s′) in T . By the definition
of t these paths differ for s and t at a node at which player i moves. So for some non-leaf node u in G
with turn(u) = i we have play(s) = σuxπ1 and play(t) = σuyπ2, where σ ,π1 and π2 are possibly empty
sequences of nodes and x 6= y. So si(u) = x and ti(u) = y.
Case 1. sy 6= ty.

Take the first, starting from the root, non-leaf node w in T y such that si(w) 6= ti(w). We have
pi(leaf (s)) = pi(leaf (sx)) ≥ pi(leaf (sy)) = pi(leaf (sw)) ≥ pi(leaf (tw)) = pi(leaf (t)), where the first
inequality holds by the assumptions for the considered implication for the node v and the second by the
fact that sw is a Nash equilibrium. So we get a contradiction.

Case 2. sy = ty.
We have pi(leaf (sx))= pi(leaf (s))< pi(leaf (t))= pi(leaf (ty))= pi(leaf (sy)). But given that si(u)=

x this contradicts the assumption for the node u.
This concludes the proof. �
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