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In Savage’s classic decision-theoretic framework [12], actions are formally defined as functions from

states to outcomes. But where do the state space and outcome space come from? Expanding on

recent work by Blume, Easley, and Halpern [3], we consider a language-based framework in which

actions are identified with (conditional) descriptions in a simple underlying language, while states

and outcomes (along with probabilities and utilities) are constructed as part of a representation theo-

rem. Our work expands the role of language from that in [3] by using it not only for the conditions

that determine which actions are taken, but also the effects. More precisely, we take the set of actions

to be built from those of the form do(ϕ), for formulas ϕ in the underlying language. This presents

a problem: how do we interpret the result of do(ϕ) when ϕ is underspecified (i.e., compatible with

multiple states)? We answer this using tools familiar from the semantics of counterfactuals [13]:

roughly speaking, do(ϕ) maps each state to the “closest” ϕ-state. This notion of “closest” is also

something we construct as part of the representation theorem; in effect, then, we prove that (under

appropriate assumptions) the agent is acting as if each underspecified action is first made definite

and then evaluated (i.e., by maximizing expected utility). Of course, actions in the real world are

often not presented in a fully precise manner, yet agents reason about and form preferences among

them all the same. Our work brings the abstract tools of decision theory into closer contact with such

real-world scenarios.

1 Motivation

In Savage’s classic decision-theoretic framework [12] actions are formally defined as functions from

states to outcomes. States are conceptualized as encoding the possible uncertainty the decision-maker

may have about the world, while outcomes correspond intuitively to the payoff-relevant ways things

might turn out. Thus, an action α can be viewed as a kind of long list: for each way the world might be

(i.e., each state s), α specifies what will happen—namely, the outcome α(s)—in case action α is actually

performed in state s.

One might ask: where do the state space and outcome space come from? Is it reasonable to model an

agent using a mathematical apparatus they presumably have no access to? Questions like these tap into

a long tradition of challenging the idealizations involved in models like Savage’s (see, e.g., [1, 2, 4, 5, 6,

7, 8, 9, 10, 14]). One response might be that we are not trying to duplicate the decision-making process

going on “in the agent’s head”, but rather to represent it, mathematically—to show that under certain

conditions it can be tracked with a certain type of formalism (in this case, as a form of expected utility

maximization).

Although this reply might assuage some worries about the use of abstract mathematical frameworks

for reasoning about decision making in general, it remains problematic that actions—the objects over

which agents are supposed to “reveal” their preferences, through concrete, binary choices—cannot them-

selves be described except by reference to the background state and outcome spaces, which might not

http://dx.doi.org/10.4204/EPTCS.335.5
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be the states and outcomes that the agent is actually thinking of. In such models, although outcomes are

what agents are supposed to ultimately care about, actions are the means by which they bring outcomes

about. This makes an agent’s preferences regarding actions arguably the closest point of contact that

these models have to the empirical, observable reality of choosing between alternatives. Indeed, this

interpretation of actions is what underlies many of the intuitions brought to bear to justify the various

axioms of decision making that Savage postulates and relies upon to prove his celebrated representation

theorem.

The concern with where the states and outcomes are coming from motivated Blume, Easley, and

Halpern [3] (henceforth BEH) to consider a model where acts and language are taken to be primary

in a sense that we explain shortly, while the state and outcome space are constructed as part of the

representation rather than specified exogenously. In more detail, BEH assumed that acts were programs

in a simple programming language formed by closing off a set of primitive programs using if . . . then

. . . else . . . , so that if a and b are programs and t is a test (intuitively, a formula in a propositional

language), then if t then a else b is a program. Thus, rather than conditioning actions on events (i.e.,

subsets of a state space), they are conditioned on descriptions of events, namely, tests. This approach

allows BEH to not only circumvent a fixed, exogenous specification of the state space and outcome space

(instead, they are constructed as part of a representation theorem, and programs are identified with maps

from from these states to outcomes), but also (as they illustrate with several examples) makes it possible

to capture a variety of framing effects, which basically derive from a mismatch between how the modeler

conceives of the world and how the agent does, as manifested in different ways that descriptions of events

might map onto actual events.

Our work is perhaps best understood as an extension of their work in which the role of language

is even more central. Specifically, while BEH allowed arbitrary primitive programs, we take the prim-

itive programs to have the form do(ϕ), where ϕ is a formula. The do(ϕ) notation follows Pearl [11];

intuitively, do(ϕ) means that the agent somehow makes ϕ true. Note that this action is somewhat un-

derspecified; it does not say what else becomes true as a result of ϕ being true; for example, if ψ is

independent of ϕ , it does not tell us whether ψ or ¬ψ is true. In our representation theorem, we assume

that the agent has a way of specifying the effects of do(ϕ). In more detail, we take states in our state

space to be characterized by formulas in the language (this is similar to the canonical model used in

BEH’s representation theorem), and take the outcome space to be the same as the state space, so that a

program maps states to states. As part of the representation theorem, the agent must decide what state

do(ϕ) maps each state ω to. We follow standard approaches to giving semantics to counterfactuals [13]

by taking do(ϕ) to map ω to the “closest” state to ω (according to some measure of closeness) where ϕ

is true. Of course, what counts as “closest” depends on the agent’s subjective view of the world, and is

constructed from their preferences over acts.

This approach allows us to model choices in a way that seems to us closer to how agents perceive and

reason about the options available to them. To illustrate, consider a policy-maker trying to decide whether

to raise the minimum wage to $15 or to leave it as is. In our framework, this amounts to comparing the

acts do(MW = $15) and do(true) (where do(true) amounts to doing nothing). Of course, different agents

may disagree about the side-effects of increasing the minimum wage (businesses may close, there may

be more automation so jobs may be lost, and so on). This amounts to saying that different agents will

interpret do(MW = $15) differently as a function from states to states, although all will agree that it

will result in a state where the minimum wage is $15.1 We can also express contingent policies in our

1We remark that in this paper we consider only the single-agent case, but we find the multi-agent case, and specifically the

effect of disagreements about what the closest state is, an exciting direction for future work.
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framework, for example, raising the minimum wage if the economy is healthy.

By making both the acts and the test conditions formulas, we can capture framing and coarseness

effects not only in the test conditions, but also in the choices. For example, we might imagine agents

reacting differently to statements like “we will require that every citizen is paid at least $15 dollars for

each hour they work” versus “we will require every business owner to pay their employees at least $15

for each hour they work”, even if we can see that these are equivalent statements. Our framework would

allow this.

The rest of this paper is organized as follows. We present our approach as an extension of the work

of BEH. This has the benefit of allowing us to apply their representation theorem directly and focus our

efforts on the novel aspects of our extension. We begin in Section 2 by reviewing the relevant definitions

from BEH and augmenting them with the new ones we need to capture language-based, underspecified

effects of actions. Then in Section 3 we articulate the representation theorem we are aiming at, introduce

decision-theoretic axioms that allow us to achieve it—including axioms from BEH (Section 3.1) as well

as several new axioms (Section 3.2)—and finally prove the theorem (Section 3.3). Section 4 concludes

with a discussion of future work. Appendix A collects proofs omitted from the main text.

2 Language, Actions, and Models

Our first step is to import the relevant definitions from BEH so as to present our extension of their

work in context. In order to emphasize the changes that we make and to streamline the presentation,

we alter some of their notation and terminology, and focus on the special case of their system without

randomization.

Let Φ denote a finite set of primitive propositions, and L=L(Φ) the propositional language consist-

ing of all Boolean combinations of these primitives. Although of course it is possible (and interesting)

to consider other languages, in this work we focus on languages of this form as the underlying language

of action—intuitively, the language in which both the conditions and the results of actions are specified.

A basic model (over L(Φ)) is a tuple M = (Ω, [[·]]M) where Ω is a nonempty set of states and

[[·]]M : Φ → 2Ω is a valuation function. The valuation is recursively extended to all formulas in L in

the usual way. Intuitively, [[ϕ ]]M is the set of states where ϕ is true. Using [[·]]M allows us to interpret

descriptions in the language L (what BEH call “tests”) as events: ϕ is interpreted as the subset [[ϕ ]]M ⊆ Ω

of the state space Ω. We sometimes drop the subscript when the model is clear from context, and write

ω |= ϕ for ω ∈ [[ϕ ]]. We say that ϕ is satisfiable in M if [[ϕ ]]M 6= /0 and that ϕ is valid in M if [[ϕ ]]M = Ω,

and write |=ϕ to indicate that ϕ is valid in all basic models. Finally, we define the theory of ω (in M) to be

the set of all formulas true at ω , denoted T h(ω) = {ϕ : ω |= ϕ}, and write ω ≡ ω ′ iff T h(ω) = T h(ω ′).

Up to now, everything we have defined has followed BEH exactly—their “primitive tests” are our

primitive propositions Φ; their “tests” are our formulas L(Φ); their “test interpretations” are our valu-

ations [[·]]M . Next we define our version of their “primitive choices”. This is where our development

begins to diverge, since we take these to be actions of the form do(ϕ); in other words, we specify primi-

tive choices using the same underlying language L(Φ) that corresponds to tests, rather than treating them

as a brand new set of primitives.

Formally, given a finite set of formulas F ⊆L, the set of actions (over F), denoted by AF , is defined

recursively as follows: for each ϕ ∈ F , do(ϕ) is an action (called a primitive action), and for all ψ ∈ L

and α ,β ∈AL, if ψ then α else β is an action. Following BEH, we take F to be finite (who take the set of

primitive choices to be finite). It is also convenient because it allows us to exclude logical inconsistencies

from F , obviating the need to interpret actions like do(false). For the propositional languages under
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consideration in this paper, up to logical equivalence, there are only finitely many formulas in any case.

Naturally, we also wish to interpret our actions in a way that respects their connection to the under-

lying language. This is the topic we turn to next.

2.1 Selection models

In a given basic model M, we want do(ϕ) to correspond to a function whose range is contained in [[ϕ ]]M,

the set of ϕ-states. Thus, we restrict our attention to basic models in which each ϕ ∈ F is satisfiable—in

this case we say that M is F-rich. But this is not enough: as discussed, do(ϕ) is underspecified; it

does not in general determine a unique function. In order to interpret such actions and compare them

to others, we must in some sense “fill in” the missing details. We formalize this with the concept of a

selection model (for F), which is a basic model M = (Ω, [[·]]M) together with a selection function (for

M) c : Ω×F → Ω satisfying c(ω ,ϕ) ∈ [[ϕ ]]M.

Selection functions were introduced by Stalnaker [13] as a mechanism to interpret counterfactual

conditionals. Following this tradition, we think of c(ω ,ϕ) as representing the “closest” state to ω where

ϕ is true. There are many other properties one might insist c have, aside from c(ω ,ϕ) ∈ [[ϕ ]] (which is

called success). For example, one may require that if ω ∈ [[ϕ ]], then c(ω ,ϕ) = ω (i.e., if ϕ is true in ω ,

then the closest state to ω where ϕ is true is ω itself); this property is called centering.

In this paper we will also consider a relatively strong condition on c, namely, that it is derived

from a parametrized family of well-orders2 on the state space, one for each state: ≤ := {≤ω : ω ∈ Ω}.

Intuitively, ω1 ≤ω ω2 says “ω1 is at least as close to ω as ω2 is”. We say that a selection function c is

induced by ≤ if c(ω ,ϕ) always outputs the ≤ω -minimal element of [[ϕ ]]. We call ≤ centered if, for

each ω ∈ Ω, the ≤ω -minimal element of Ω is ω (in which case it is also easy to see that the induced

selection function satisfies centering). Finally, we say that ≤ is language-based if the relations ≦ω on

the quotient Ω/≡ given by

[ω1]≦ω [ω2] iff ω1 ≤ω ω2

are well-defined well-orders, and moreover, whenever ω ≡ ω ′, we have ≦ω =≦ω ′. Note that in this case

ω ≡ ω ′ implies c(ω ,ϕ) ≡ c(ω ′,ϕ).3 Intuitively, if ≤ is language-based then what counts as the closest

state essentially depends only on the formulas that are true at a state. We cannot have two states ω1 and

ω2 that agree on all formulas (so that ω1 ≡ ω2) and a third state ω3 that does not agree with ω1 and ω2 on

all formulas such that ω3 is between ω1 and ω2 in terms of distance from some state ω (i.e., we cannot

have ω1 ≤ω ω3 ≤ω ω2).

The purpose of the selection function in our models is to take an underspecified transition from states

to states and “resolve the ambiguity”. Specifically, given a transition that starts in state ω and ends up

in a ϕ-state, the selection function c can then by applied to specify the exact ϕ-state, namely c(ω ,ϕ),
where it actually ends up. In this way, given a basic, F-rich model M, each action of the form do(ϕ) can

be interpreted in any selection model (M,c) based on M as a function [[do(ϕ)]]M,c : Ω → Ω defined by:

[[do(ϕ)]]M,c(ω) = c(ω ,ϕ).

2A binary relation ≤ on a set is called a linear order if it is complete, transitive, and antisymmetric (i.e., x ≤ y and y ≤ x

implies x = y). A well-order is a linear order in which every nonempty subset has a least element.
3Here’s why: since c(ω,ϕ) is the ≤ω -minimal element of [[ϕ]], it must also be that [c(ω,ϕ)] is the ≦ω -minimal element of

{[ω ′′] : ω ′′ |= ϕ}. Similarly, [c(ω ′,ϕ)] is the ≦ω ′ -minimal element of {[ω ′′] : ω ′′ |= ϕ}. Since ≦ω =≦ω ′ , these must coincide,

so we have [c(ω,ϕ)] = [c(ω ′,ϕ)].
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Of course, we can extend this interpretation to all actions in AF in the obvious way (and exactly as BEH

do):

[[if ψ then α else β ]]M,c(ω) =

{

[[α ]]M,c(ω) if ω ∈ [[ψ ]]

[[β ]]M,c(ω) if ω /∈ [[ψ ]].

3 Representation

We begin as usual with a binary relation � on AF , where α � β says that α is “at least as good as” β .

Following standard conventions, we define α ≻ β as an abbreviation for α � β and β 6� α , and α ∼ β

for α � β and β � α , representing “strict preference” and “indifference”, respectively. We also assume

that � is complete, that is, all elements are comparable, so that for all acts α and β , either α � β or

β � α . Although BEH consider incomplete relations, we focus here on the simpler case of complete

relations in order to streamline the presentation and highlight the novel components of our model.

A language-based SEU (Subjective Expected Utility) representation for a relation � on AF is a

finite selection model (M,c) together with a probability measure π on Ω and a utility function u : Ω →R

such that, for all α ,β ∈AF ,

α � β ⇔ ∑
ω∈Ω

π(ω) ·u([[α ]]M,c(ω))≥ ∑
ω∈Ω

π(ω) ·u([[β ]]M,c(ω)). (1)

We note the key differences between the representation theorem BEH establish and what we are

aiming at. First, their result produces a separate outcome space and state space, whereas for us, these

spaces coincide. More importantly, their result treats “primitive choices” (namely, our actions do(ϕ),
for ϕ ∈ F) as true primitives in the sense that each is assigned to an arbitrary function from states

to outcomes. By contrast, we want to respect the structure of an action like do(ϕ)—specifically, its

connection to the formula ϕ—by requiring that do(ϕ) correspond to a map from Ω to Ω such that

ω 7→ c(ω ,ϕ) for a suitable selection function c. One of the novel aspects of our proof consists in showing

how to determine the selection function from preferences on acts.

Since our framework can be viewed a specialization of the BEH framework (with our actions having

additional, language-based structure as described), rather than proving our representation theorem from

scratch, we can reuse much of their construction. Thus, we will present the same axioms (adapted to our

notation) that BEH present, and subseqently augment them with new principles that allow us to construct

the selection function.

3.1 Cancellation

BEH’s main axiom is a cancellation law. Explaining this requires a few preliminary definitions, begin-

ning with the notion of a multiset, which can be thought of as a set that allows for multiple instances of

each of its elements; two multisets are equal just in case they contain the same elements with the same

multiplicities. For example, the multiset {{a,a,a,b,b}} is different from the multiset {{a,b,b,b,b}}: both

multisets have five elements, but the mulitiplicity of a and b differ.

Given any subset X ⊆ Φ, let ϕX =
∧

p∈X p∧
∧

q/∈X ¬q. Intuitively, ϕX is a “complete description” of

the truth values of all primitive propositions in the language L(Φ), namely the description that says for

each primitive proposition p that it is true iff it belongs to X . An atom is any formula of the form ϕX .

Since L(Φ) is a propositional language and we use classical semantics for propositional logic, for all

formulas ϕ ∈L(Φ) and atoms ϕX , the truth of ϕ is determined by ϕX : either |= ϕX → ϕ , or |= ϕX →¬ϕ .
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It is therefore not surprising that every action in α ∈ AF can be identified with a function fα : 2Φ → F ,

defined recursively as follows:

fdo(ϕ)(X) = ϕ

fif ψ then α else β (X) =

{

fα(X) if |= ϕX → ψ

fβ (X) if |= ϕX →¬ψ .

BEH define atoms in the same way and use them to define functions from atoms to primitive choices just

as we did above (replace do(ϕ) by an arbitrary primitive choice).4

Now we can state the central cancellation law that enables us to apply the BEH representation theo-

rem:

(Canc) Let α1, . . . ,αn,β1, . . . ,βn ∈AF , and suppose that for each X ⊆Φ we have {{ fα1
(X), . . . , fαn

(X)}}=
{{ fβ1

(X), . . . , fβn
(X)}}. Then, if for all i < n we have αi � βi, it follows that βn � αn.

Intuitively, this says that if we get the same collection of outcomes with α1, . . . ,αn as with β1, . . . ,βn

(taking multiplicity into account) in each state, then we should view the collection {{α1, . . . ,αn}} and

{{β1, . . . ,βn}} as equally good. Thus, if αi is at least as good as βi for i = 1, . . . ,n− 1, then, to balance

things out, βn should be at least as good as αn.

As pointed out by BEH, Cancellation is a surprisingly powerful axiom. In particular, BEH show that

we can use (Canc) to derive many simpler (and more classical) principles of choice: that � is reflexive

and transitive, that independence holds,5 and that if α and β are equivalent in the sense that fα = fβ ,

then α ∼ β . (However, it should be noted that Cancellation seems stronger than the conjunection of these

axioms.)

3.2 Selection axioms

To present the new axioms that will allow us to construct an appropriate selection function as part of

the representation theorem, it will be helpful to introduce some new notation. To begin, we write if

ϕ then α as a shorthand for if ϕ then α else do(true). Intuitively, the action do(true) corresponds to

doing “nothing”, since true is true no matter what, so we might think of “otherwise nothing” as being

the default in case no explicit else... clause is given. Of course, for this to make sense we must have

true ∈ F; we make this assumption henceforth.

Next we define an abbreviation for conditional preference, familiar from Savage’s classical devel-

opment [12]: write α �ϕ β as an abbreviation for (if ϕ then α) � (if ϕ then β ).6 When ϕ = ϕX , we

write α �X β for α �ϕX
β , and we extend this notation to strict conditional preference and conditional

indifference in the obvious way.

Our first axiom is related to the centering constraint for selection functions (i.e., that if ϕ is true at a

state, then that state automatically counts the “closest” ϕ-state):

4Techncially, we are not mapping atoms to primitive acts, but since there is an obvious bijection X 7→ ϕX beween sets of

primitive proposition and atoms, and an obvious bijection ϕ 7→ do(ϕ) between elements of F and primitive acts, we really can

be thought of as doing just that.
5That is, for all α,β ,γ ,γ ′ ∈AF and all ϕ ∈ F ,

(if ϕ then α else γ � if ϕ then β else γ) ⇔ (if ϕ then α else γ ′ � if ϕ then β else γ ′).

6As BEH show, the cancellation law implies independence, so in fact we have α �ϕ β iff for all γ , if ϕ then α else γ �
if ϕ then β else γ .
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(Cent) If |= ψ → ϕ , then (if ψ then do(ϕ))∼ do(true).

To build intuition it’s helpful to consider the special case where ψ = ϕ , in which case (Cent) just

says that doing ϕ precisely when ϕ is already the case (and otherwise doing nothing) is the same as doing

nothing. Here of course by “the same” what is really meant is that the agent is indifferent between those

two acts. Since we are trying to bootstrap properties of a selection function from the agent’s preferences,

all our principles will ultimately need to bottom out in statements about what the agent does or does

not have a preference between. The general statement of (Cent) simply expands this reasoning to cases

where the condition ψ entails the result of the action, ϕ , and so again in this case do(ϕ) happens only in

cases where ϕ is already true.

Lemma 1. If (M,c) is a selection model, c satisfies centering, and |= ψ → ϕ , then

[[if ψ then do(ϕ)]]M,c = idΩ = [[do(true)]]M,c.

Our second axiom is meant to capture the idea that sufficiently specific conditions resolve any ambi-

guity (expressible in the underlying language) about the effect of an action:

(SSC) If |= ϕ ↔ (ϕ1 ∨ ·· · ∨ϕn), then ∀X ⊆ Φ, ∃i ∈ {1, . . . ,n} such that for all ψ satisfying |= ϕi → ψ

and |= ψ → ϕ , we have do(ψ)∼X do(ϕi).

This requires some unpacking. As above, it is illuminating to begin by considering the special case

where ψ = ϕ . Then |= ψ → ϕ holds trivially and |= ϕi → ψ is true by assumption, so we can read (SSC)

intuitively as follows: If ϕ is ambiguous between a variety of (potentially) more precise statements

(namely, ϕ1, . . . ,ϕn), then for any sufficiently specific condition (i.e., any atom ϕX ), there is at least one

precisification ϕi of ϕ such that, conditional on ϕX , doing ϕ is equivalent to doing ϕi (from the agent’s

perspective).

This, as well as the more general statement of (SSC), follows from the assumption that the selection

function c is induced by a language-based family of well-orders.

Lemma 2. If (M,c) is a selection model where c is induced by the well-orders ≤= {≤ω : ω ∈ Ω}, ≤ is

language-based, |= ϕ ↔ (ϕ1 ∨ ·· · ∨ϕn), and X ⊆ Φ, then ∃i ∈ {1, . . . ,n} such that for all ψ satisfying

|= ϕi → ψ and |= ψ → ϕ and all ω ∈ [[ϕX ]], we have [[do(ψ)]]M,c(ω) = [[do(ϕi)]]M,c(ω).

The next idea is crucial to the ultimate construction of our selection function. For each atom ϕW , we

will define a total preorder7 ⊑W on the set of atoms that will in turn be extended to a linear order and

used to specify the selection function. Formally, we define:

ϕX ⊑W ϕY iff do(ϕX ∨ϕY )∼W do(ϕX).

Loosely speaking, ϕX ⊑W ϕY says that in ϕW -states, the ambiguity inherent in doing ϕX ∨ϕY is resolved

in the agent’s mind in favour of doing ϕX ; this is why the agent is indifferent (conditional on ϕW ) between

doing ϕX ∨ϕY and just doing ϕX . In this sense we think of ϕX as being at least as “close” to ϕW as ϕY is.

Note that the definition above requires F to contain all atoms as well as all pairwise disjunctions

of atoms. This richness in F is what allows us to use the agent’s preferences on actions to define an

appropriate preorder. We make this assumption henceforth. It is an interesting question to what extent

the ensuing construction can be carried out without this assumption; we return to this point in Section 4.

Now we can state our third axiom, which simply says that this notion of closeness is transitive:

(Trans) For all W,X ,Y,Z ⊆ Φ, if ϕX ⊑W ϕY and ϕY ⊑W ϕZ , then ϕX ⊑W ϕZ .

7A total preorder is a complete and transitive relation (so, unlike a linear order, it need not be antisymmetric).
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Lemma 3. (SSC) implies that each ⊑W is complete.

Lemma 4. If (SSC) and (Trans) hold, then each ⊑W is a total preorder and can be extended to a well-

order ≤W on the set of atoms; if, in addition, (Cent) holds, then each ≤W can be defined so that ϕW is

the ≤W -minimal element.

Given a family of well-orders {≤W : W ⊆ Φ} as defined in Lemma 4, let min≤(W,ϕ) denote the

unique X ⊆ Φ such that ϕX is ≤W -minimal in {ϕY : |= ϕY → ϕ}. So ϕX is the “closest” atom compatible

with ϕ to ϕW ; intuitively, then, doing ϕ in a ϕW situation should essentially amount to doing ϕX . This is

precisely what the next lemma asserts.

Lemma 5. If (SSC) and (Trans) hold, then do(ϕ)∼W do(ϕmin≤(W,ϕ)).

3.3 The representation theorem

Theorem 1. If � is a complete binary relation on AF satisfying (Canc), (Cent), (SSC), and (Trans),

then there is a language-based SEU representation for �.

Proof. We begin by following the proof in [3, Theorem 2] to obtain a state-dependent representation

with state space 2Φ and outcome space F .8 More precisely, we consider the set of functions F = { fα :

α ∈ AF} defined in Section 3.1, which can be viewed as Savage acts in the classical sense [12]. The

relation � on AF induces a relation �∗ on F defined as follows:

fα �∗ fβ ⇔ α � β .

As discussed, (Canc) implies that α ∼ α ′ whenever fα = fα ′ , so �∗ is well-defined; moreover, as BEH

show, (Canc) is strong enough to yield the desired state-dependent representation result for �∗, namely,

that there exists a function u∗ : 2Φ ×F → R such that, for all f ,g ∈ F,

f �∗ g ⇔ ∑
X∈2Φ

u∗(X , f (X))≥ ∑
X∈2Φ

u∗(X ,g(X)).

Up to now we have mirrored the proof given by BEH exactly, which has given us a utility function u∗

but also an outcome space that we don’t want. Moreover, the utility function is state-dependent; it takes

as arguments both a state and an outcome. We want a utility function that depends only on states (which

for us are the same as outcomes). Thus, our task now is to transform this result into a selection model

that we can use to give a language-based SEU representation of � (including a utility function defined

only on states).

Set Ω = 2Φ × 2Φ; so our state space is isomorphic to pairs of atoms. This is a technical maneuver

that allows us to “factor out” probabilities from the state-dependent utility function u∗ we already have.

Loosely speaking, given (X ,Y ) ∈ Ω, the first component X represents how things are, while the second

component Y represents how things were. This intuition should become clearer as we continue.

We define a basic model M = (Ω, [[·]]M) by specifying the valuation on Ω as follows:

[[p]]M = {(X ,Y ) ∈ Ω : |= ϕX → p}.

In other words, p is true at (X ,Y ) just in case ϕX entails p. Note that the valuation only depends on the

first component X of the state (X ,Y ).

8“State-dependent” here means that the utility function constructed will depend not only on outcomes but on states as well.
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Next we specify a parametrized family of well-orders on Ω that we can use to induce a selection

function. First define

(X ,X ′)⊑W,W ′ (Y,Y ′) iff ϕX ≤W ϕY .

Again, we are ignoring the second component. This is clearly a well-order when restricted to the first

component of the state space, but not in general, since by definition we have (X ,X ′) ⊑W,W ′ (Y,Y ′) and

(Y,Y ′) ⊑W,W ′ (X ,X ′) whenever X = Y . However, as usual, we can extend these relations to well-orders

≤W,W ′ on all of Ω simply by choosing a linear order for each set of the form ΩX := {(X ,Y ) : Y ∈ 2Φ},

and in so doing we can insist that for each fixed X , the state (X ,W ) is ≤W,W ′-minimal on the set ΩX .

This is the first time we have paid attention to the second component of the state. Roughly speaking,

we are ensuring that the order ≤W,W ′ “remembers” the set W . More perspicuously, it is easy to see that

if c is the selection function induced by the family {≤(W,W ′) : (W,W ′) ∈ Ω}, then for each (W,W ′) ∈ Ω

and all ϕ ∈ L, we have

[[do(ϕ)]]M,c(W,W ′) = c((W,W ′),ϕ) = (min≤(W,ϕ),W ). (2)

That is, the closest ϕ-state to (W,W ′) encodes both the closest atom compatible with ϕ to ϕW (in the first

component) and the state W that we started from (in the second component).

Now we can define our utility function and probability measure. Let π be any probability measure

on Ω satisfying π(ΩX)> 0 for all X . Next, define u : Ω → R by

u(X ,W ) =
u∗(W,ϕ)

π(ΩW )
, for some ϕ such that min≤(W,ϕ) = X .

Of course, we need to check that u is well-defined, and we do so in Lemma 6. But first some intuition is

in order. Thinking back to the state-dependent utility function u∗, a reasonable first gloss of the meaning

of u∗(W,ϕ) might be “the utility of doing ϕ in W”.9 The point is that u∗ is specifying the utility value

not of an action in itself or the “result” of an action, but rather the result of an action if you started in a

certain state. This is all very informal, but the idea is just to provide some intuition for why, in defining

our utility function u from u∗, we need to appeal to a rich enough notion of state that can “remember”

what the “previous” state was—intuitively, the state we were at before the action was performed.

Lemma 6. The function u is well-defined.

The last thing we need to show is that the selection model (M,c) we have built, along with π and u,

gives us an expected utility representation of �. So let α ,β ∈AF and suppose that α � β . By definition

this is equivalent to fα �∗ fβ , which by the state-dependent representation result is in turn equivalent to

∑
W∈2Φ

u∗(W, fα (W ))≥ ∑
W∈2Φ

u∗(W, fβ (W )). (3)

Now observe that, for each W ∈ 2Φ,

u∗(W, fα (W )) = π(ΩW ) ·u(min≤(W, fα (W )),W ) (by definition of u)

= π(ΩW ) ·u([[do( fα(W ))]]M,c(W,W ′)) (from (2))

= π(ΩW ) ·u([[α ]]M,c(W,W ′)) (by definition of fα and (M,c)).

9Though this isn’t quite right—it’s more like the product of that utility with the probability of W , which is why we have to

factor that probability out in defining our utility function.
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Note that in the above W ′ can be any element of 2Φ, since it’s not taken into account in determining the

result of an action. That means we can rewrite the above as

u∗(W, fα (W )) = ∑
W ′∈2Φ

π(W,W ′) ·u([[α ]]M,c(W,W ′)).

Of course, an analogous equation holds for u∗(W, fβ (W )). Thus, (3) is equivalent to:

∑
W∈2Φ

∑
W ′∈2Φ

π(W,W ′) ·u([[α ]]M,c(W,W ′))≥ ∑
W∈2Φ

∑
W ′∈2Φ

π(W,W ′) ·u([[β ]]M,c(W,W ′)),

which is exactly the right-hand side of (1), completing the proof.

4 Discussion

We have considered a framework in which both the conditions for and the results of an action are given

by simple descriptions in a fixed language. These descriptions may not be maximally specific, so the

results of actions can be underspecified and therefore “open to interpretation”. We have shown that,

in this context, agents whose preferences satisfy certain constraints can be represented as if they are

expected utility maximizers who interpret each underspecified action using a selection function identical

to that employed in standard semantics for counterfactual conditionals.

The representation theorem presented in this extended abstract might be viewed as a sort of “proof of

concept”, namely, that such representation results are possible and even natural. This opens the door for

a variety of related results connecting different assumptions about the selection function to different con-

straints on the agent’s preferences. As we mentioned above, there are a number of standard assumptions

along these lines in the literature on counterfactuals.

The underlying language we chose to work with can also be altered. Perhaps most obviously, we

might consider allowing countably-many primitive propositions. In this case, we cannot straightfor-

wardly use atoms as the basis for the state space in the representation theorem, and in general we might

need to relax the notion of a “complete description” to something like a “sufficiently detailed descrip-

tion”. Going in the other direction, we might also considering dropping some of the richness constraints

we imposed. For instance, we assumed that F contains all atoms (and all pairwise disjunctions of atoms).

Can this assumption be relaxed?

In our framework, because we use the same descriptions for both states and outcomes, we found it

convenient to identify the two. This in turn makes it straightforward to extend to a richer language of

acts, where we allow sequential actions, implemented directly by function composition. That is, we can

allow actions of the form do(ϕ);do(ψ) (“first do ϕ , then do ψ”), or more generally, α ;β . Thus, the

(underspecified!) results of the first action are directly relevant to the conditions under which the second

action is executed, which may allow for entirely new and intriguing ways of encoding modeling features

via constraints on preferences.

Finally, generalizing this framework to multiple agents is of interest. Indeed, the original motivation

for this work is doubly relevant in multi-agent settings: two different decision-makers might conceive of

the same action in different ways, by associating it with different functions. For example, we should be

able to model two agents who agree about their values and have the same beliefs about the likelihoods of

uncertain events, but still have different preferences over actions—intuitively, because they interpret the

“default” way of implementing actions differently (in other words, they have the same utility function

and probability measure, but different selection functions).

In short, this area is ripe for further exploration, with many theoretical and practical applications.
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A Proofs

Lemma 1. If (M,c) is a selection model, c satisfies centering, and |= ψ → ϕ , then

[[if ψ then do(ϕ)]]M,c = idΩ = [[do(true)]]M,c.

Proof. By definition, we have

[[if ψ then do(ϕ)]]M,c(ω) =

{

[[do(ϕ)]]M,c(ω) if ω ∈ [[ψ ]]

[[do(true)]]M,c(ω) if ω /∈ [[ψ ]].

=

{

c(ω ,ϕ) if ω ∈ [[ψ ]]

c(ω , true) if ω /∈ [[ψ ]].

But since [[ψ ]]⊆ [[ϕ ]] by assumption, in either case, centering applies and guarantees that

[[if ψ then do(ϕ)]]M,c(ω) = ω .

Lemma 2. If (M,c) is a selection model where c is induced by the well-orders ≤= {≤ω : ω ∈ Ω}, ≤ is

language-based, |= ϕ ↔ (ϕ1 ∨ ·· · ∨ϕn), and X ⊆ Φ, then ∃i ∈ {1, . . . ,n} such that for all ψ satisfying

|= ϕi → ψ and |= ψ → ϕ and all ω ∈ [[ϕX ]], we have [[do(ψ)]]M,c(ω) = [[do(ϕi)]]M,c(ω).

Proof. Let ω ∈ [[ϕX ]] and choose i such that c(ω ,ϕ)∈ [[ϕi]]. This is possible since we know c(ω ,ϕ)∈ [[ϕ ]]
and, by assumption, [[ϕ ]] = [[ϕ1]]∪ . . .∪ [[ϕn]]. Since c(ω ,ϕ) is the ≤ω -minimal element of [[ϕ ]], it follows

that for any set T with c(ω ,ϕ) ∈ T ⊆ [[ϕ ]], c(ω ,ϕ) is also the ≤ω-minimal element of T . In particular,

since c(ω ,ϕ) ∈ [[ϕi]]⊆ [[ψ ]]⊆ [[ϕ ]], this implies that c(ω ,ϕ) is the ≤ω -minimal element of both [[ϕi]] and

[[ψ ]]. Thus, by definition, c(ω ,ϕi) = c(ω ,ψ), so

[[do(ψ)]]M,c(ω) = c(ω ,ψ) = c(ω ,ϕi) = [[do(ϕi)]]M,c(ω).

Since ω |= ϕX and this completely determines the theory of ω , we know that for any other ω ′ ∈ [[ϕX ]],
ω ′ ≡ ω , so c(ω ′,ϕ)≡ c(ω ,ϕ). This guarantees that c(ω ′,ϕ) ∈ [[ϕi]]; in other words, the same choice of

i works for all states in [[ϕX ]], which completes the proof.

Lemma 3. (SSC) implies that each ⊑W is complete.

Proof. Fix any two atoms ϕX and ϕY . We apply (SSC) in the case where ϕ = ϕX ∨ϕY , ϕ1 =ϕX , ϕ2 =ϕY ,

and ψ = ϕ . Then we know that given any W ⊆ Φ, either do(ϕ)∼W do(ϕ1) or do(ϕ)∼W do(ϕ2), that is,

either do(ϕX ∨ϕY )∼W do(ϕX) or do(ϕX ∨ϕY )∼W do(ϕY ), which established completeness.

Lemma 4. If (SSC) and (Trans) hold, then each ⊑W is a total preorder and can be extended to a well-

order ≤W on the set of atoms; if, in addition, (Cent) holds, then each ≤W can be defined so that ϕW is

the ≤W -minimal element.

Proof. The fact that ⊑W is a total preorder follows immediately from (Trans) and Lemma 3. Moreover,

it is easy to see that any total preorder on a finite set can be extended to a well-order (by choosing an

arbitrary linear order for each subset of ⊑W -equivalent atoms). To see that this can be done in such a way

that ϕW is the ≤W -minimal element, it suffices to show that for every X ⊆ Φ, we have ϕW ⊑W ϕX , or in

other words, do(ϕW ∨ϕX) ∼W do(ϕW ). The result now follows from two applications of (Cent). First

we apply it in the case where ψ = ϕW and ϕ = ϕW ∨ϕX to obtain (if ϕW then do(ϕW ∨ϕX))∼ do(true);
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then we apply it in the case where ψ = ϕ = ϕW to obtain (if ϕW then do(ϕW )) ∼ do(true). Transitivity

of ∼ therefore yields

(if ϕW then do(ϕW ∨ϕX))∼ (if ϕW then do(ϕW )),

which by definition is equivalent to do(ϕW ∨ϕX)∼W do(ϕW ).

Lemma 5. If (SSC) and (Trans) hold, then do(ϕ)∼W do(ϕmin≤(W,ϕ)).

Proof. Let X = min≤(W,ϕ), and let ϕX1
, . . . ,ϕXn

enumerate all the atoms compatible with ϕ . Then by

definition we know that X = X j for some j. We also clearly have |= ϕ ↔ (ϕX1
∨ ·· · ∨ϕXn

), so we can

apply (SSC) (taking ψ = ϕ) to find an i such that do(ϕ)∼W do(ϕXi
).

By definition of X , we know that ϕX ≤W ϕXi
, which means do(ϕX ∨ϕXi

) ∼W do(ϕX). On the other

hand, since |= ϕXi
→ (ϕX ∨ϕXi

) and |= (ϕX ∨ϕXi
) → ϕ , (SSC) also tells us (taking ψ = ϕX ∨ϕXi

this

time) that do(ϕX ∨ϕXi
) ∼W do(ϕXi

). By transitivity of ∼W we therefore have do(ϕXi
) ∼W do(ϕX), and

therefore do(ϕ)∼W do(ϕX), as desired.

Lemma 6. The function u is well-defined.

Proof. What we need to show that is that if min≤(W,ϕ) = X and also min≤(W,ϕ ′) = X , then u∗(W,ϕ) =
u∗(W,ϕ ′). By Lemma 5, we know that do(ϕ)∼W do(ϕX), and also that do(ϕ ′)∼W do(ϕX ). Focusing on

the first of these two indifferences to begin with, by definition we have

if ϕW then do(ϕ)∼ if ϕW then do(ϕX).

Setting α = if ϕW then do(ϕ) and β = if ϕW then do(ϕX), it follows that fα ∼∗ fβ (by definition of �∗).

Thus, from the state-dependent representation result, we can deduce that

∑
Z∈2Φ

u∗(Z, fα(Z)) = ∑
Z∈2Φ

u∗(Z, fβ (Z)).

But it’s easy to see that whenever Z 6= W , fα(Z) = fβ (Z), so we can cancel all those terms in the

equality above to arrive at u∗(W, fα (W )) = u∗(W, fβ (W )). This yields u∗(W,ϕ) = u∗(W,ϕX ), since

clearly fα(W ) = ϕ and fβ (W ) = ϕX . Analogous reasoning starting from the fact that do(ϕ ′)∼W do(ϕX)
leads us to u∗(W,ϕ ′) = u∗(W,ϕX ). Putting these together gives u∗(W,ϕ) = u∗(W,ϕ ′), as desired.
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