The Complexity of Abstract Machines

Beniamino Accattoli
INRIA & LIX, Ecole Polytechnique

beniamino.accattoli@inria.fr

The A-calculus is a peculiar computational model whose defimitioes not come with a notion of
machine. Unsurprisingly, implementations of thealculus have been studied for decades. Abstract
machines are implementations schema for fixed evaluatiategies that are a compromise between
theory and practice: they are concrete enough to providéiemaf machine and abstract enough to
avoid the many intricacies of actual implementations. €hgman extensive literature about abstract
machines for the\ -calculus, and yet—quite mysteriously—the efficiency afsl machines with
respect to the strategy that they implement has almost theesr studied.

This paper provides an unusual introduction to abstractimas, based on the complexity of
their overhead with respect to the length of the implemesteategies. It is conceived to be a
tutorial, focusing on the case study of implementing thekaezad (call-by-name) strategy, and yet
it is an original re-elaboration of known results. Moregwsame of the observation contained here
never appeared in print before.

1 Cost Models & Size-Explosion

TheA-calculus is an undeniably elegant computational modetdfinition is given by three constructors
and only one computational rule, and yet it is Turing-cortgleA charming feature is that it does not
rest on any notion of machine or automaton. The catch, haweuhat its cost model are far from being
evident. What should be taken as time and space measurdsefdrdalculus? The natural answers
are the number of computational steps (for time) and the maxi size of the terms involved in a

computation (for space). Everyone having played with ARealculus would immediately point out

a problem: theA-calculus is a nondeterministic system where the numbetepissdepends much on

the evaluation strategy, so much that some strategies nvaygdi when others provide a result (but
fortunately the result, if any, does not depend on the gjyatéVhile this is certainly an issue to address,
it is not the serious one. The big deal is calize-explosionand it affects all evaluation strategies.

Size-Explosion. There are families of terms where the size of itk term is linear imn, evaluation
takes a linear number of steps, but the size of the resultdereqtial inn. Therefore, the number of
steps does not even account for the time to write down thdtyesul thus at first sight it does not look
as a reasonable cost model. Let's see examples.

The simplest one is a variation over the famous loogiABrMQ := (AX.XX)(AX.XX) =g Q =g ....
In Q there is an infinite sequence of duplications. In the firg-gizploding family there is a sequence of
n nested duplications. We define both the fanjtly} < of size-exploding terms and the famiyn } nen
of results of the evaluation

b = y w = Y
thir = (AXXXty Upr1 = UpUp

We uselt| for the size of a termi,e. the number of symbols to write it, and say that a termestral

if it is normal and it is not an abstraction.

H. Cirstea, S. Escobar (Eds.): Third International Worksbo Rewriting © B. Accattoli
Techniques for Program Transformations and Evaluation {&/6). This work is licensed under the
EPTCS 235, 2017, pp. 315, doi:10.4204/EPTCS.235.1 Creative Commoris Attribution License.


http://dx.doi.org/10.4204/EPTCS.235.1
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 The Complexity of Abstract Machines

Proposition 1.1(Open and Rightmost-Innermost Size-Explosiobgét ne N. Then § —>E Un, Moreover
ta| = O(n), |un| = Q(2"), and , is neutral.

Proof. By induction onn. The base case is immediate. The inductive cdgei = (AX.XX)t, —>?;
(AXXX)Un —p UnUn = Uny1, Where the first sequence is obtained by ithe The bounds on the sizes
are immediate, as well as the fact thiat 1 is neutral. O

Strategy-Independent Size-Explosion. The example relies on rightmost-innermost evaluatiog. (
the strategy that repeatedly selects the rightmost-inosrfrredex) and open terms (the free variable
to =y). In fact, evaluating the same family in a leftmost-outesineay would produce an exponentially
long evaluation sequence. One may then believe that sj@esan is a by-product of a clumsy choice
for the evaluation strategy. Unfortunately, this is nott¢hse. It is not hard to modify the example as to
make it strategy-independent, and it is also easy to geff igen terms. Let the identity combinator be
| ;= Azz(it can in fact be replaced by any closed abstraction). Define

ri:=AXAY.(yxx Po =1
M1 = AX("n(AY.(YXY)) P2 := AY.(YPnPn)

The size-exploding family i$rpl }nen, i.€. it is obtained by applying, to the identityl = pg. The
statement we are going to prove is in fact more general, ahQpitinstead of just,l, in order to obtain
a simple inductive proof.

Proposition 1.2(Closed and Strategy-Independent Size-Explosi@ej n>0. Then fpn, —>E Pn+m, and
in particular ryl —3 pn. Moreover,|ryl| = O(n), |pn| = Q(2"), ral is closed, and pis normal.

Proof. By induction onn. The base casejpm = AX.AY.(yxX) pm —g (AY.(YPmPm)) = Pms1. The induc-

tive casern.1Ppm = AX.(r(AY.(yXX)))Pm —g rn(AY.(YPmPm)) = nPms+1 —>;} Pnimy1, Where the second
sequence is obtained by thk. The rest of the statement is immediate. O

The family {rpl }nen is interesting because no matter how one looks at it, it adweyplodes: if
evaluation is weaki. it does not go under abstraction) there is only one possiigation to normal
form and if it is strong i(e. unrestricted) all derivations have the same length (angarmutatively
equivalent). To our knowledge this family never appearegrint before.

2 TheA-Calculus is Reasonable, Indeed

Surprisingly, the isolation and the systematic study ofdilze-explosion problem is quite recent—there
is no trace of it in the classic books on thecalculus, nor in any course notes we are aware of. Its
essence, nonetheless, has been widespread folklore fogaitoe: in practice, functional languages
never implement fulB-reduction, considered a costly operation, and theothtittae A -calculus is usu-
ally considered a model not suited for complexity analyses.

A way out of the issue of cost models for thecalculus, at first sight, is to take the time and
space required for the execution ofAaerm in a fixed implementation. There is however no candnica
implementation. The design of an implementation in factsres a number of choices. Consequently,
there are a number of different but more or less equivalemhinas taking a different number of steps
and using different amounts of space to evaluate a termndrigne of them would be arbitrary, and,
most importantly, would betray the machine-independeirit € the A -calculus.



B. Accattoli 3

Micro-Step Operational Semantics. Luckily, the size-explosion problem can be solved in a mnaehi
independent way. Somewhat counterintuitively, in face tumber of3-steps can be taken as a rea-
sonable cost model. The basic idea is simple: one has to atef the A-calculus, by switching to a
different setting thamimicspB-reduction without literally doing it, acting ocompact representatioref
terms to avoid size-explosion. Essentially, the recipaireg four ingredients:

1. Statics A-terms are refined with a form sharingof subterms;

2. Dynamics evaluation has to manipulate terms with sharingnaiaro-operations;
3. Cost these micro-step operations have constant cost;

4. Result micro-evaluation stops onshared representation of the result

The recipe leaves also some space for improvisatenalculus can in fact be enriched wifiist-class
sharingin various ways. Mainly, there are three approactasstract machinesexplicit substitutions
and graph rewriting They differ in the details but not in the essence—they cagrbeped together
under the slogamicro-step operational semantics

Reasonable Strategies. An evaluation strategy» for the A -calculus isreasonabléf there is a micro-
step operational semantiés mimicking — and such that the number of micro-steps to evaluate a term
t is polynomial in the number of+-steps to evaluate(and in the size of, we will come back to this
point later on). If a strategy- is reasonable then its length is a reasonable cost modgliteleize-
explosion: the idea is that the-calculus is kept as aabstractmodel, easy to define and reason about,
while complexity-concerned evaluation is meant to be perém at the more sophisticated micro-step
level, where the explosion cannot happen.

Of course, the design of a reasonable micro-step operadenaantics depends much on the strategy
and the chosen flavor of micro-steps semantics, and it caarkdeoin easy. Foweakstrategies—used
to model functional programming languages—reasonableorsiteps semantics are based on a simple
form of sharing. The first result about reasonable strasagaes obtained by Blelloch and Greiner in 1995
[11] and concerns indeed a weak strategy, namely the calblme one. At the micro-step level it relies
on abstract machines. Similar results were then provechaigaiependently, by Sands, Gustavsson, and
Moran in 2002[[13] and by Dal Lago and Martini in 2006 [12]. Btrongstrategies—at work in proof
assistant engines—quite more effort and care are requiredphisticated second-level of sharing, called
useful sharingis necessary to obtain reasonable micro-step semanticirémg evaluation. The first
such semantics has been introduced by Accattoli and Dal ireg014 [10] for the leftmost-outermost
strategy, and its study is still ongoirig [7, 2].

The Complexity of Abstract Machines. To sum up, various techniques, among which abstract ma-
chines, can be used to prove that the numbe#-efeps is a reasonable time cost model,a metric for
time complexity. The study can then be reversed, explormg to use this metric to study the relative
complexity of abstract machines, that is, the complexityhef overhead of the machine with respect
to the number of3-steps. Such a study leads to a new quantitative theory tfaghbsnachines, where
machines can be compared and the value of different desigioeshcan be measured. The rest of the
paper provides a gentle introduction to the basic concefptiseonew complexity-aware theory of ab-
stract machines being developed by the author in joint wigk§,[4,[7) 2] with Damiano Mazza, Pablo
Barenbaum, and Claudio Sacerdoti Coen, and resting on émolsconcepts developed beforehand in
collaborations with Delia Kesner]|[9] and Ugo Dal Lago [8]veall as Kesner plus Eduardo Bonelli and
Carlos Lombardi[[b].



4 The Complexity of Abstract Machines

Case Study: Weak Head Strategy. The paper focuses on a case study, the weak head (call-bg}nam
strategy, also known as weak head reduction (weredectionandstrategyas synonymous, and prefer
strategy, and defined as follows:

(rootB) t —whu
AXOU—wnt{xeu} e @ (1)

This is probably the simplest possible evaluation strat&fycourse, it is deterministic. Let us mention
two other ways of defining it, as they will be useful in the selguFirst, the given inductive definition
can be unfolded into a single synthetic ridex.t)ur; ...r —wht{x<u}rs...r. Second, the strategy can
be given via evaluation contexts: defige= (-) | Er and define—yn asE((Ax.t)u) —wh E(t{x<u})
(whereE (t) is the operation of pluggingin the contexE, consisting in replacing the hole) with t).

Sometimes, to stress the modularity of the reasoning, weaigtract the weak head strategy into a
generic strategy-. Last, aderivationis a possibly empty sequence of rewriting steps.

3 Introducing Abstract Machines

Tasks of Abstract Machines. An abstract machine is an implementation schema for an ataiu
strategy— with sufficiently atomic operations and without too manyailst A machine for— accounts
for 3 tasks:

1. Search searching for—-redexes;
2. Substitution replace meta-level substitution with an approximatiosdabon sharing;
3. Namestake care ofr-equivalence.

Dissecting Abstract Machines. To guide the reader through the different concepts to desmnghan-
alyze abstract machines, the next two subsections dedarithetail two toy machines that address in
isolation the first two mentioned taslsgarchandsubstitution They will then be merged into the Milner
Abstract Machine (MAM). In Secf] 7 we will analyze the comyite of the MAM. Next, we will address
namesand describe the Krivine Abstract Machine, and quickly gtilsl complexity.

Abstract Machines Glossary.
e An abstract machin# is given bystates noteds, andtransitionsbetween them, noted>;

e A state is given by theode under evaluatioplus somedata-structurego implementsearchand
substitution and to take care afames

e The code under evaluation, as well as the other pieces ofsgattered in the data-structures, are
A-termsnot considered modula-equivalencg

e Codes are over-lined, to stress the different treatmeot-efjuivalence;
e A codet is well-namedf x may occur only irti (if at all) for every sub-codd x.U of t;
e A statesis initial if its code is well-named and its data-structures are empty;

e Therefore, there is a bijectiofi (up to a) between terms and initial states, calleampilation
sending a ternh on the initial statd® on a well-named code-equivalent td;

e Anexecutioris a (potentially empty) sequence of transitishs-* sfrom an initial states’ obtained
by compiling a(n initial) ternp;



B. Accattoli 5

e A statesis reachableif it can be obtained as the end state of an execution;

A statesis final if it is reachable and no transitions applyso

¢ A machine comes with a mapfrom states to terms, calledkecoding that on initial states is the
inverse (up tax) of compilation;

A machineM has a set of-transitionsthat are meant to be mapped@eedexes (and whose name
involves 3) by the decoding, while the remainimyerhead transitionare mapped on equalities;

We use|p| for the length of an executiop, and|p|s for the number of3-transitions inp.

Implementations. For every machine one has to prove that it correctly impldmthe strategy it was
conceived for. Our notion, tuned towards complexity aredysequires a perfect match between the
number of3-steps of the strategy and the numbepetiansitions of the machine execution.

Definition 3.1 (Machine Implementation)A machinel implements a strategy on A -terms when given
a A-term t the following holds

1. Executions to Derivationgor any M-executionp : t° ~»; s there exists a»-derivation d:t —* s.

2. Derivations to Executiondor every—-derivation d:t —, u there exists d-executiorp :t° ~»; s
such that s= u.

3. B-Matching in both previous points the numbg|z of B-transitions inp is exactly the lengthd|
of the derivation di.e. |d| = |p|g.

Note that if a machine implements a strategy than the twavaakly bisimilar where weakness is
given by the fact that overhead transitions do not have aivalgat on the calculus (hence their name).
Let us point out, moreover, that tfiematching requirement in our notion of implementation isisumal
but perfectly reasonable, as all abstract machines we ameaf do satisfy it.

4 The Searching Abstract Machine

Strategies are usually specified through inductive ruléb@se in[(1). The inductive rules incorporate in
the definition the search for the next redex to reduce. Abtistnachines make such a search explicit and
actually ensure two related subtasks:

1. Store the current evaluation context in appropritt@-structures
2. Searchincrementally exploiting previous searches.

For weak head reduction the search mechanism is basic. Taetacture is simply a stacik storing
the arguments of the current head subterm.

Searching Abstract Machine. The searching abstract machine (Searching AM) in[Big. 1\aiagbm-
ponents, theodein evaluation position and thergument stackThe machine has only two transitions,
corresponding to the rules il (1), ofetransition ¢, ) dealing withB-redexes in evaluation position
and one overhead transition+(g) adding a term on the argument stack. Compilation of a (wathed)
termt into a machine state simply sentd$o theinitial state (f,€). The decoding given in Fidl1 is
defined inductively on the structure of states. It can edently be given contextually, by associating
an evaluation context to the data structures—in our casdirsgethe argument stackto a contextr by
settinge := (-), 0 m:= m((-)u), and(t, i) := (). Itis useful to have both definitions since sometimes
one is more convenient than the other.




6 The Complexity of Abstract Machines

Stacks m = ¢|t:m | Decoding (t,e) =t
Compilation t° := (f,¢) (toxm = (fu,n

\Code Stack|| Trans || Code Stack\

f
A

g
S

~ @l t a:mn
tlosm|| ~p |[HYx-U}| @

x

Figure 1. Searching Abstract Machine (Searching AM).

Implementation. We now show the implementation theorem for the Searching At iespect to the
weak head strategy. Despite the simplicity of the machireepvovide a quite accurate account of the
proof of the theorem, to be taken as a modular recipe. Thepamidhe other implementation theorems
in the paper will then be omitted as they follow exactly theeastructuremutatis mutandis
Theexecutions-to-derivationgart of the implementation theorem always rests on a lemmatabe
decoding of transitions, that in our case takes the follgWorm.
Lemma 4.1(Transitions Decoding)Let s be a Searching AM state.
1. B-Transition if s ~», 5 S thens—g 8

2. Overhead Transitianf s ~~g s thens=¢.

Proof. The first point is more easily proved using the contextualnitedn of decoding.
1. s= (Axt,0:m =05 mAxt) = m((Axt)u) —p m(t{x<u}) =s.
2.8=({,u:m=(tu,m=s O

Transitions decoding extends to a projection of executtorderivations (via a straightforward in-
duction on the length of the execution), as required by ti@eémentation theorem. For tladerivations-
to-executiongart of the theorem, we proceed similarly, by first provingttsingle weak head steps are
simulated by the Searching AM and then extending the sinomdb derivations via an easy induction.
There is a subtlety, however, because, if done naively sbeg-simulations do not compose.

Let us explain the point. Given a step+yn, U there exists a statesuch that® ~~g,~g sands=u,
as expected. This property, however, cannot be iteratedil & many-steps simulation, becaisse u
does notimplys=u°, i.e. sin general is not the compilation af To make things work, the simulation of
t —wh U should not start front® but from a states’ such thas =t. Now, the proof of the step simulation
lemma we just described relies on the following three pridpsr

Lemma 4.2(Bricks for Step Simulation)
1. Vanishing Transitions Terminate- g terminates;
2. Determinism the Searching AM is deterministic;
3. Progressfinal Searching AM states decode-ta,,-normal terms.
Proof. Termination ~~ @ -sequences are bound by the size of the cddeterminism ~,z and~~@i

clearly do not overlap and can be applied in a unique Waggress final states have the forfd x., €)
and(x, r1), that both decode te»y,-normal forms. O



B. Accattoli 7

Environments E = ¢|[x-f]:E | Decoding (te) ==t
Compilation t° := (f,¢) (f,[xu]::E) = (I{x<u},E)
\ Code Env Trans|| Code Env \
(AxDory...Tg E ~ag || ... Tk [x<U] 1 E

XF1...Tk EuxtE | ~var ||[T0T1...Tk | E 1] E

wheret? denoted where bound names have been freshly renamed.

Figure 2: Micro-Substituting Abstract Machine (Micro AM).

Lemma 4.3(One-Step Simulation)Let s be a Searching AM state. lfs,, u then there exists a staté s
such that s~g~g s and $ = u.

Proof. Let nfg(s) be the normal form o with respect tovg, that exists and is unique by termi-
nation of~g (Lemmal4.1L]1) and determinism of the machine (Lerhm# 4.5R)ce~ g is mapped
on identities (Lemm@a_4l.2) one hasg(s) =s. By hypothesiss —yn-reduces, so that by progress
(Lemmal4.2.Bhf @ (S) cannot be final. Thenfg (s) v+ S, andnfg (S) = S—wn S by the one-step
simulation lemma (Lemnia4(1.1). By determinism-6f,», one obtaing = u. O

Finally, we obtain the implementation theorem.

Theorem 4.4. The Searching AM implements the weak head strategy.

Proof. Executions to Derivation®y induction on the lengtlp| of p using Lemma 4]1Derivations to
Executions by induction on the lengtid| of d using Lemma 413 and noting thiat=t. O

5 The Micro-Substituting Abstract Machine

Decomposing Meta-Level Substitution. The second task of abstract machines is to replace meta-leve
substitutiorf{x«u} with micro-step substitution on demangt. a parsimonious approximation of meta-
level substitution based on:

1. Sharing when aB-redex(Ax.f)uis in evaluation position it is fired but the meta-level sitbibn
t{x<u} is delayed, by introducing an annotatip@-U] in a data-structure for delayed substitutions
calledenvironment

2. Micro-Step Substitutianvariable occurrences are replaced one at a time;

3. Substitution on Demandeplacement of a variable occurrence happens only whendg ap in
evaluation position—variable occurrences that do not arel/aluation position are never substi-
tuted.

The purpose of this section is to illustrate this processatation via the study of a toy machine, the
Micro-Substituting Abstract Machin@licro AM) in Fig. 2], forgetting about the search for redexes



8 The Complexity of Abstract Machines

Environments. We are going to treat environments in an unusual way: theatitee mostly deals
with local environments, to be discussed in Séc¢t. 9, while here we prefirst address the simpler
notion of global environment, but to ease the terminology we will simply ¢a##menvironments So,
anenvironment Bs a list of entries of the fornix<t]. Each entry denotes thidelayedsubstitution of
tfor x. In a state(f,E’ :: [x<1] :: E”) the scope ok is given byt andE’, as it is stated by forthcoming
Lemma5.1l. The (global) environment models a store. As itaedard in the literature, it is lsst, but
the list structure is only used to obtain a simple decoding) amandy delimitation of the scope of its
entries. These properties are useful to develop the metatiof abstract machines, but keep in mind
that (global) environments are not meant to be implemenddidts.

Code. The code under evaluation is nowAaterm hry ...Tx expressed as a headthat is either g3-
redex(Ax.f)u or a variablex) applied tok arguments—it is a by-product of the fact that the Micro AM
does not addressearch

Transitions. There are two transitions:
e Delaying3: transition~qz removes thg3-redex(Ax.t)u but does not execute the expected sub-
stitution {x<0}, it rather delays it, addingk<| to the environment. It is thg-transition of the
Micro AM.

¢ Micro-Substitution On Demandf the head of the code is a variabteand there is an entrjxf]
in the environment then transitior 4, replaces that occurrence xef-and only that occurrence—
with a copy off. It is necessary to rename the new copyt @hto a well-named term) to avoid
name clashes. Itis the overhead transition of the Micro AM.

Implementation. Compilation sends a (well-named) tetrto the initial statg, €), as for the Search-
ing AM (but now the empty data-structure is the environmenhe decoding simply applies the delayed
substitutions in the environment to the term, consideriragrt as meta-level substitutions.

The implementation of weak head reductien,, by the Micro AM can be shown using the recipe
given for the Searching AM, and it is therefore omitted. Timdyalifference is in the proof that the
overhead transitior-5, terminates, that is based on a different argument. We speit because it will
be useful also later on for complexity analyses. It requinedollowing invariant of machine executions:

Lemma 5.1(Name Invariant) Let s= (f,E) be a Micro AM reachable state.
1. Abstractionsif Ax.U is a subterm of or of any code in E then x may occur onlytn
2. Environment if E = E’ :: [x<U] :: E” then x is fresh with respect toand E'.
Proof. By induction on the length of the executignleading tos. If p is empty thersis initial and the

statement holds becaubés well-named by hypothesis. ff is non-empty then it follows from thih.
and the fact that transitions preserve the invariant, amamediate inspection shows. O

Lemma 5.2(Micro-Substitution Terminates)~4, terminates in at mosE| steps (on reachable states).

Proof. Consider a~4, transition copyingi from the environmenE’ :: [x<] :: E”. If the next transition
is again-yar, then the head di is a variabley and the transition copies from an entrygfi because by
Lemmd5.lly cannot be bound by the entriesBA Then the number of consecutive,,, transitions is
bound byE (that is not extended by-ygy). O

Theorem 5.3. The Micro AM implements the weak head strategy.



B. Accattoli 9

Environments E = ¢|[x~f]::E | Decoding (t,e,g) =t
Stacks m = ¢g|t:m f,urxmE) = (fu,mE)
Compilation t° = (f,€,¢) {,e,[x0 = E) = ({{x<u},¢E)
| Code] Stack Env Trans| Code| Stack Env \
ta m E ~a@l t |oom E
Axt joom E ~rB t n [x<T] - E
X m |Ex[xed] i E || ~var | 7 m |Ex[xf:FE

wheret” denoted where bound names have been freshly renamed.
Figure 3: Milner Abstract Machine (MAM).

6 Search + Micro-Substitution = Milner Abstract Machine

The Searching AM and the Micro AM can be merged together imedMilner Abstract Machine (MAM),
defined in Fig[B. The MAM has both an argument stack and an@nvient. The machine has ofie
transition~- g inherited from the Searching AM, and two overhead transitje~ g inherited from the
the Searching AM ane4, inherited from the Micro AM. Note that irR+y5r the code now is simply a
variable, because the arguments are supposed to be stdhedargument stack.

For the implementation theorem once again the only delipatst is to prove that the overhead
transitions terminate. As for the Micro AM one needs a nanvariant. A termination measure can
then be defined easily by mixing the size of the codes (neeafed §) and the size of the environment
(needed for~4), and it is omitted here, because it will be exhaustivelydigtd for the complexity
analysis of the MAM. Therefore, we obtain that:

Theorem 6.1. The MAM implements the weak head strategy.

7 Introducing Complexity Analyses

The complexity analysis of abstract machines is the studlgeosymptotic behavior of their overhead.

Parameters for Complexity Analyses. Let us reason abstractly, by considering a generic strategy
in the A-calculus and a given machiMeimplementing—. By thederivations-to-executiongart of the
implementation (Definition_3]1), given a derivatioi to —" u there is a shortest executign: tg ~»y

s such thats = u. Determiningthe complexity off amounts to bound the complexity of a concrete
implementation op, say on a RAM model, as a function of two fundamental pararaete

1. Input the sizeltp| of the initial termty of the derivationd,;

2. Strategythe lengthn = |d| of the derivatiord, that coincides with the numbgp|z of B-transitions
in p by the 3-matching requirement for implementations.

Note that our notion of implementation allows to forget afibe strategy while studying the complexity
of the machine, because the two fundamental parameteratargdlized: the input is simply the initial
code and the length of the strategy is simply the numb@-tansitions.



10 The Complexity of Abstract Machines

Types of Machines. The bound on the overhead of the machine is then used tofgléssis follows.
Definition 7.1. LetM an abstract machine implementing a strategy Then

e Misreasonabléf the complexity of! is polynomial in the inputty| and the strategyp

B
e Mis unreasonablé it is not reasonable;

e Mis efficientif it is linear in both the input and the strategy (we sometraay that it isilinean.

Recipe for Complexity Analyses. The estimation of the complexity of a machine usually takst®ps:

1. Number of Transitionsbound the length of the executignsimulating the derivatioml, usually
having a bound on every kind of transitionif

2. Cost of Single Transitionsbound the cost of concretely implementing a single traonsiof M—
different kind of transitions usually have different codtiere it is usually necessary to go beyond
the abstract level, making some (high-level) assumptioham codes and data-structure are con-
cretely represented (our case study will provide examples)

3. Complexity of the Overheadbtain the total bound by composing the first two pointst thaby
taking the number of each kind of transition times the costngflementing it, and summing over
all kinds of transitions.

8 The Complexity of the MAM

In this section we provide the complexity analysis of the MA®mM which analyses of the Searching
and Micro AM easily follow.

The Crucial Subterm Invariant. The analysis is based on the following subterm invariant.

Lemma 8.1(Subterm Invariant) Let p : t; ~>mam (T, 7T, E) be a MAM execution. Themand any code
in rtand E are subterms of.t

Note that the MAM copies code only in transitieny,r, Wwhere it copies a code from the environment
E. Therefore, the subterm invariant bounds the size of thieesmis duplicated along the execution.

Let us be precise abogtibtermsfor us,Uis a subterm of; if it does so up to variable names, both
free and bound (and so the distinction between terms andsdedegelevant). More precisely: define
t~ ast in which all variables (including those appearing in birgjeare replaced by a fixed symbal
Then, we will consideti to be a subterm dfwhenevewu™ is a subterm of~ in the usual sense. The key
property ensured by this definition is that the dizieof U is bounded byf|.

Proof. By induction on the length gb. The base case is immediate and the inductive one follows fro
thei.h. and the immediate fact that the transitions preserve tragiam. O

The subterm invariant is crucial, for two related reasorist Fit linearly relates the cost of duplica-
tions to the size of the input, enabling complexity analysésth respect to the length of the strategy,
then, micro-step operations have constant cost, as relgiréhe recipe for micro-step operational se-
mantics in Secf.]2. Second, it implies that size-explos@s feen circumvented: duplications are linear,
and so the size of the state can grow at most linearly with timeber of stepd,e. it cannot explode. In
particular, we also obtain the compact representationeofébults required by the recipe.



B. Accattoli 11

The relevance of the subterm invariant goes in fact well hdyabstract machines, as it is typical
of most instances of micro-step operational semantics. fAandomplexity analyses of th&-calculus
it is absolutely essential, playing a role analogous to ¢ii#he cut-elimination theorem in the study of
sequent calculi or of the sub-formula property for proofrsba

Number of Transitions. The next lemma bounds the global number of overhead transitiFor the
micro-substituting transitior-4 it relies on an auxiliary bound of a more local form. For tharsling
transition~+@ the bound relies on the subterm invariant. We denote Vth, [0|@, and|p|var the
number of+ g, ~»@|, and~4 transitions inp, respectively.

Lemma 8.2. Letp :t5 ~»mam S be a MAM execution. Then:
1. Micro-Substitution Linear Local Boundf 0 : S~ g\, S then|olvar < [E| =|p]g;
2. Micro-Substitution Quadratic Global Boun{pvar < [p|3;
3. Searching (ang) Local Bound if 0 :s~{5 o s then|o| <|to|;

4. Searching Global Boundp|@ < |to| - (|p]var+1) < [to] - (‘p% +1).

Proof.

1. Reasoning along the lines of Lemmal5.2 one obtains-that transitions ino have to use entries
of E from left to right (~@ and~-yar do not modifyE), and sojo|var < |E|. Now, |E| is exactly
|p|g, because the only transition extendiBgand of exactly one entry, is:g.

2. The fact that a linear local bound induces a quadraticaglbbund is a standard reasoning. We
spell it out to help the unacquainted reader. The executialternates phases Bftransitions and
phases of overhead transitiong, it has the shape:

th=s1 W:B dl M**@I,var S “’“’?B dz M**@I,var S W?B q( M**@I,var S

Let g be the length of the segmeﬁ-ltw;‘ﬁ s andb; be the number of-4, transitions in the seg-
Ments ~ & o S+1, fori =1,... k. By Point1, we obtair; < 3'_; aj. Then|p|var = 31 b <
SK13-1a. Note thaty|_;a; < 5% ;a8 = [plg andk < |plg. So[plvar < 3113} 18) <
sialels <ol

3. The length ofo is bound by the size of the code in the stateecause~g @ strictly decreases

the size of the code, that in turn is bound by the #igeof the initial term by the subterm invariant
(Lemmd8.1).

4. The executiom alternates phases of,g and~- g transitions and phases of,4 transitions;.e.
it has the shape:

10 = S1~(p.@ SL “var 2 ~rp.@ 2 “var -+ X “ip.@ K “varrp@l S

By Point[3 the length of the segmergs—; g § is bound by the sizéty| of the initial term.
The code may grow, instead, with, transitions. Sdp|@ is bound byltg| times the number
|plvar Of micro-substitution transitions, plyg| once more, because at the beginning there might
be ~+5 @ transitions before any- 4, transition—in symbols|p|@ < [to| - (|o|var + 1). Finally,

[tol - (|plvar+1) < [to] - (|p[5 +1) by Point2. O



12 The Complexity of Abstract Machines

Cost of Single Transitions. To estimate the cost of concretely implementing singlesitaoms we need
to make some hypotheses on how the MAM is going to be itselfempnted on RAM:

1. Codes, Variable (Occurrences), and Environment Entrasstractions and applications are con-
structors with pointers to subterms, a variable is a memacgtion, a variable occurrence is a
reference to that location, and an environment ep@#ft] is the fact that the location associated to
x contains (the topmost constructor of)

2. Random Access to Global Environmenthe environmenE& of the MAM can be accessed in
constant time (invy4) by just following the reference given by the variable oceace under
evaluation, with no need to accdssequentially, thus ignoring its list structure.

It is now possible to bound the cost of single transitionsteNbat the case of 4 transitions relies
on the subterm invariant.

Lemma 8.3. Letp :t; ~»mam S be a MAM execution. Then:
1. Each-@g transition inp has constant cost;
2. Each~,g transition inp has constant cost;
3. Each~y4 transition inp has cost bounded by the sitg of the initial term.

Proof. According to our hypothesis on the concrete implementaioine MAM, ~»@, just moves the
pointer to the current code on the left subterm of the apiptinaand pushes the pointer to the right
subterm on the stack—evidently constant time. Similarly . For~~ya, the environment entry
[x<f] is accessed in constant time by hypothesis,tthas to bea-renamedj.e. copied. It is not hard
to see that this can be done in time linealifinthe naive algorithm for copying carries around a list of
variables, and it is quadratic, but it can be easily improtedte linear) that by the subterm invariant
(Lemmd8.1) is bound by the sizig| of the initial term. O

Complexity of the Overhead. By composing the analysis of the number of transitions (Lei@®)
with the analysis of the cost of single transitions (Lenin®) 8:e obtain the main result of the paper.

Theorem 8.4(The MAM is Reasonable)Letp : t; ~~mam S be a MAM execution. Then:
1. ~»@ transitions inp cost all together Qlto| - (\p]% +1));
2. ~p transitions inp cost all together Qp|g);
3. ~var transitions inp cost all together @ito| - (|p|5 + 1));

Thenp can be implemented on RAM with cos{itg) - (|p|f3 +1)), i.e. the MAM is a reasonable imple-
mentation of the weak head strategy.

The Efficient MAM. According to the terminology of Sedtl 3, the MAM is reasomablt it is not
efficient because micro-substitution takes time quadiatithe length of the strategy. The quadratic
factor comes from the fact that in the environment there @agrowing chains of renamingge. of
substitutions of variables for variables, see [6] for moetads on this issue. The MAM can actually
be optimized easily, obtaining an efficient implementatiby replacing~-,g with the following two
B-transitions:

AxE
AxE

o<

DT E | o || E{Xey) | T E
ST E || vy, t | [x<u] :: E | if Gis not a variable




B. Accattoli 13

Search is Linear and the Micro AM is Reasonable. By Lemmd8.2 the cost of search in the MAM
is linear in the number of transitions for implementing roisubstitution. This is an instance of a more
general fact:searchturns out to always be bilinear (in the initial code and in #reount of micro-
substitutions). There are two consequences of this gefatl First, it can be turned into a design
principle for abstract machines—seathis to be bilinear otherwise there is something wrong in the
design of the machine. Second, search is somewhat negligibtomplexity analyses.

The Micro AM can be seen as the MAM up to search. In particulaatisfies a subterm invariant
and thus circumvents size-explosion. The Micro AM is howayeite less efficient, because at each
step it has to search the redex from scratch. An easy butemhathalisys shows that its overhead is
nonetheless polynomial. Therefore, it makes sense todengery abstract machines as the Micro AM
that omit search. In fact, they already exist, in disguisesteategies in thiknear substitution calculus
[1,/5], a recent approach to explicit substitutions modgractly micro-substitution without search (the
traditional approach to explicit substitutions insteaddele both micro-substitution and search) and they
were used for the first proof that a strong strategy (the leftroutermost one) is reasonahlel[10].

The Searching AM is Unreasonable. It is not hard to see that the Searching AM is unreasonable.
Actually, the number of transitions is reasonable. Theqmiipn of MAM executions on Searching AM
executions, indeed, shows that the number of searchingitiars of the Searching AM is reasonable.
It is the cost of single transitions that becomes unreadenébfact, the Searching AM does not have a
subterm invariant, because it rests on meta-level subetituand the size of the terms duplicated by the
~~ transition can explode (it is enough to consider the sizaeging family of Proposition 1]2).

The moral is that micro-substitution is more fundamentahteearch. While the cost of search can
be expressed in terms of the cost of micro-substitutionctim¥erse is in fact not possible.

9 Names: Krivine Abstract Machine

Accounting for Names. In the study presented so far we repeatedly took names sbgiday dis-
tinguishing between terms and codes, by asking that irétdes are well-named, and by proving an
invariant about names (Lemrha b.1). The procesa-oénaming however has not been made explicit,
the machines we presented rather rely on a meta-level regansed as a black box.

The majority of the literature on abstract machines, irt@ays more attention t@-equivalence,

or rather to how to avoid it. We distinguish two levels:

1. Removal of on-the-flg-equivalence in these cases the machine works on terms with variable
names but it is designed in order to implement evaluatiohauit evera-renaming. Technically,
the global environment of the MAM is replaced by many localimmments, each one for every
piece of code in the machine. The machine becomes more coniplparticular the non-trivial
concept of closure (to be introduced shortly) is necessary.

2. Removal of namederms are represented using de Bruijn indexes (or de Blewjgls), removing
the problem ofx-equivalence altogether but sacrificing the readabilitthefmachine and reducing
its abstract character. Usually this level is built on tophaf previous one.

We are now going to introduce Krivine Abstract Machine (kagpnames, so at the first level), yet
another implementation of the weak head strategy. Es#igniias a version of the MAM without on-
the-fly a-equivalence. The complexity analysis will show that it lexactly the same complexity of
the MAM. The further removal of names is only (anti)cosmetibe complexity is not affected either.
Consequently, the task of accounting for names is—as foclseanegligible for complexity analyses.



14 The Complexity of Abstract Machines

Loglal Erv. e B €| [x=c]€ | ciosure Decoding fe) = t
osures e := (f.e) Elxce) = (Exc}e
Stacks m = e€|cum e i
States s = (c,7) State Decoding (c,e) = ¢
Compilation t° := ((f,€),¢) (ceum = ((cc,e).m)
| Code| LocEnv]| Stack]|| Trans|| Code| LocEnv | Stack |
o e m ~@l t e (Ue)
Axi e CLTT|| ~p T |[xC]:e m
X e T || ~var f ¢ m with e(x) = (t,€)

Figure 4: Krivine Abstract Machine (KAM).

Krivine Abstract Machine. The machine is in Fid.J4. It relies on the mutually inductwekfined
concepts ofocal environmentthat is a list of closures, armosure that is a list of pairs of a code and a
local environment. A state ispair of a closure and a stack, but in the description of the tramsitwe
write it as atriple, by spelling out the two components of the closure. Let usaixphe nameclosure
usually, machines are executed on closed terms, and thessareldecodes indeed to a closed term.
While essential in the study of call-by-value or call-byedestrategies, for the weak head (call-by-name)
strategy the closed hypothesis is unnecessary, that is whdowot deal with it—so a closure here does
not necessarily decode to a closed term. Two remarks:

1. Garbage Collectiontransition~yr, beyond implementing micro-substitution, also accouats f
some garbage collection, as it throws away the local enwieni e associated to the replaced
variablex. The MAM simply ignores garbage collection. For time analygarbage collection can
indeed be safely ignored, while it is clearly essential fmace (both the KAM and the MAM are
however desperately inefficient with respect to space).

2. No a-Renaming and the Length of Local Environmemames are never renamed. The initial
code, as usual, is assumed to be well-named. Then the evitaesame local environment are all
on distinguished names (formally, a name invariant holdibgn the length of a local environment
e is bound by the number of names in the initial term, that isthey size of the initial term
(formally, |e| < |to|). This essential quantitative invariant is used in analisfythe next paragraph.

Implementation and Complexity Analysis. The proof that the KAM implements the weak head strat-
egy follows the recipe for these proofs and it is omitted. thercomplexity analysis, the bound of the
number of transitions can be shown to be exactly as for the MAMirect proof is not so simple, be-
cause the bound om 4, transitions cannot exploit the size of the global environtnd he bound can
be obtained by relating the KAM with the Searching AM (for wiithe exact same bound of the MAM
holds), or by considering theepth(i.e. maximum nesting) of local environments. The proof is orditte

The interesting part of the analysis is rather the study efdbst of single transitions. As for the
MAM, we need to spell out the hypotheses on how the KAM is cetaly implemented on RAM.
Variables cannot be implemented with pointers, becaussahee variable name can be associated to
different codes in different local environments. So theyeh simply be numbers. Then there are two
choices for the representation of environments, either #ine represented as lists or as arrays. In both
cases-g can be implemented in constant time. For the other tramsitio



B. Accattoli 15

1. Environments as Arraysve mentioned that there is a bound on the length of locarenmients

(le] < Jto|) so that arrays can be used. The choice allows to implemegt in constant time,
because can be accessed directly at the position described by thdewugiven byx. Transition
~~@ however requires to duplicate and this is necessary because the two copies might later on
be modified differently. So the cost ofag transition becomes linear jtp| and~- g transitions
all together cosO(|to|?- (|p|f3 + 1)), that also becomes the complexity of the whole overhead of
the KAM. This is worse than the MAM.

2. Environments as Listsmplementing local environments as lists provides slypoirenvironments,

overcoming the problems of arrays. With lists, transitieig becomes constant time, as for the
MAM, because the copy af now is simply the copy of a pointer. The trick is that the twpies
of the environment can only be extended differemtiythe heagdso that the tail of the list can be
shared. Transitior-,,; however now needs to accessequentially, and so it cosfy| as for the
MAM. Thus globally we obtain the same overhead of the MAM.

Summing upnamescan be pushed at the meta-level (as in the MAM) without afigahe complex-

ity of the overhead. Thusilamesare even less relevant thaearchat the level of complexity. The moral
of this tutorial then is thasubstitutionis the crucial aspect for the complexity of abstract machine

References

[1]
(2]
[3]
[4]
[5]
[6]
[7]
(8]
[9]
[10]
[11]
[12]

[13]

Beniamino Accattoli (2012):An Abstract Factorization Theorem for Explicit Substibuts In: RTA, pp.
6—21. Available ahttp://dx.doi.org/10.4230/LIPIcs.RTA.2012.6.

Beniamino Accattoli (2016)The Useful MAM, a Reasonable Implementation of the Stio@glculus In:
WOLLIC 2016 pp. 1-21. Available aittp://dx.doi.org/10.1007/978-3-662-52921-8_1.

Beniamino Accattoli, Pablo Barenbaum & Damiano Mazz@1(@): Distilling abstract machinesin: ICFP
2014 pp. 363-376. Available atttp://doi.acm.org/10.1145/2628136.2628154.

Beniamino Accattoli, Pablo Barenbaum & Damiano Mazz@1®): A Strong Distillery In: APLAS 2015
pp. 231-250. Available atttp: //dx.doi.org/10.1007/978-3-319-26529-2_13.

Beniamino Accattoli, Eduardo Bonelli, Delia Kesner & 1@ Lombardi (2014)A nonstandard standardiza-
tion theorem In: POPL, pp. 659—670. Available aittp://doi.acm.org/10.1145/2535838.2535886.

Beniamino Accattoli & Claudio Sacerdoti Coen (201@n the Value of Variablesin: WoLLIC 2014, pp.
36-50. Available abttp://dx.doi.org/10.1007/978-3-662-44145-9_3.

Beniamino Accattoli & Claudio Sacerdoti Coen (2018)n the Relative Usefulness of Fireballs: LICS
2015 pp. 141-155. Available atttp://dx.doi.org/10.1109/LICS.2015.23.

Beniamino Accattoli & Ugo Dal Lago (20120n the Invariance of the Unitary Cost Model for Head Reduc-
tion. In: RTA, pp. 22-37. Available @ttp://dx.doi.org/10.4230/LIPIcs.RTA.2012.22.

Beniamino Accattoli & Delia Kesner (2010Y.he StructuraA-Calculus In: CSL, pp. 381-395. Available
athttp://dx.doi.org/10.1007/978-3-642-15205-4_30.

Beniamino Accattoli & Ugo Dal Lago (2014Beta reduction is invariant, indeedn: CSL-LICS 14, pp.
8:1-8:10. Available ahttp://doi.acm.org/10.1145/2603088.2603105.

Guy E. Blelloch & John Greiner (1995Parallelism in Sequential Functional Languagds: FPCA pp.
226-237. Available aittp://doi.acm.org/10.1145/224164.224210.

Ugo Dal Lago & Simone Martini (2006)An Invariant Cost Model for the Lambda Calculua: CiE 2006
pp. 105-114. Available atttp://dx.doi.org/10.1007/11780342_11.

David Sands, Jorgen Gustavsson & Andrew Moran (2003jnbda Calculi and Linear Speedups: The
Essence of Computatippp. 60—84. Available atttp://dx.doi.org/10.1007/3-540-36377-7_4.


http://dx.doi.org/10.4230/LIPIcs.RTA.2012.6
http://dx.doi.org/10.1007/978-3-662-52921-8_1
http://doi.acm.org/10.1145/2628136.2628154
http://dx.doi.org/10.1007/978-3-319-26529-2_13
http://doi.acm.org/10.1145/2535838.2535886
http://dx.doi.org/10.1007/978-3-662-44145-9_3
http://dx.doi.org/10.1109/LICS.2015.23
http://dx.doi.org/10.4230/LIPIcs.RTA.2012.22
http://dx.doi.org/10.1007/978-3-642-15205-4_30
http://doi.acm.org/10.1145/2603088.2603105
http://doi.acm.org/10.1145/224164.224210
http://dx.doi.org/10.1007/11780342_11
http://dx.doi.org/10.1007/3-540-36377-7_4

	1 Cost Models & Size-Explosion
	2 The Lambda-Calculus is Reasonable, Indeed
	3 Introducing Abstract Machines
	4 The Searching Abstract Machine
	5 The Micro-Substituting Abstract Machine
	6 Search + Micro-Substitution = Milner Abstract Machine
	7 Introducing Complexity Analyses
	8 The Complexity of the MAM
	9 Names: Krivine Abstract Machine

